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1 Executive Summary
It is currently understood that there are four fundamental forces in nature: gravitational, electromagnetic,

weak and strong forces. The strong force governs the interactions between quarks and gluons, elementary
particles whose interactions give rise to the vast majority of visible mass in the universe. The mathematical
description of the strong force is provided by the non-Abelian gauge theory Quantum Chromodynamics (QCD).
While QCD is an exquisite theory, constructing the nucleons and nuclei from quarks, and furthermore explaining
the behavior of quarks and gluons at all energies, remain to be complex and challenging problems. Such
challenges, along with the desire to understand all visible matter at the most fundamental level, position the
study of QCD as a central thrust of research in nuclear science. Experimental insight into the strong force can
be gained using large particle accelerator facilities, which are necessary to probe the very short distance scales
over which quarks and gluons interact. The Long Range Plans (LRPs) exercise of 1989 and 1996 led directly to
the construction of two world-class facilities: the Continuous Electron Beam Accelerator Facility (CEBAF) at
Jefferson Lab (JLab) that is focused on studying how the structure of hadrons emerges from QCD (cold QCD
research), and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) that aims at the
discovery and study of a new state of matter, the quark-gluon plasma (QGP), at extremely high temperatures (hot
QCD research). The different collision systems used to access the incredibly rich field of hot and cold QCD in
the laboratory are illustrated in Fig. 1.

Figure 1: Experimental methods to study Cold and Hot QCD using electron-nucleon (nucleus) scattering (top
left) and heavy-ion collisions (top right), respectively. The Electron-Ion Collider (bottom), to be realized within
the next LRP period, will bring new, exciting experimental programs to QCD research.

These past investments have produced major advances. Nucleons and nuclei are being studied with increasing
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precision with a unified description of the partonic structure utilizing multi-dimensional imaging. Significant
progress has been made, paving the way towards a complete picture of how quarks and gluons give rise to
the mass, spin, and momentum of the nucleon. In hot QCD, the QGP is created in the collisions of nuclei at
RHIC and the Large Hadron Collider (LHC) and is observed to behave like a fluid with very low specific shear
viscosity; the current goals are to understand how the fluid behavior emerges from QCD and to characterize
the temperature (and chemical potential) dependence of the properties of the QGP. As this White Paper is
written, current experimental programs at CEBAF, RHIC and the LHC continue to provide exciting near term
opportunities to capitalize on the investments in experimental equipment and accelerator operations. Most
importantly, the QCD community looks forward to the construction of the Electron Ion Collider (EIC) as a major
new facility to push forward QCD research in the next decades, with significant focus on exploring the properties
of gluons, the mediators of the strong force.

1.1 QCD Community Input
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD

Town Meeting that took place September 23-25, 2022 at MIT [1], as part of the Nuclear Science Advisory
Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The
meeting agenda is included in the Appendix. The meeting highlighted progress in QCD nuclear physics since the
2015 LRP (LRP15) [2] and identified key questions and plausible paths to obtaining answers to those questions,
defining priorities for our research over the coming decade. In defining the priority of outstanding physics
opportunities for the future, both prospects for the short (∼ 5 years) and longer term (5-10 years and beyond) are
identified together with the facilities, personnel and other resources needed to maximize the discovery potential
and maintain United States leadership in QCD physics worldwide.

We would like to note in preparation for this white paper, numerous excellent white papers were prepared
by members of our community. We drew upon these documents wherever appropriate. This White Paper is
organized as follows: In the next part of this Executive Summary, we detail the Recommendations and Initiatives
that were presented and discussed at the Town Meeting, and their supporting rationales. A survey was sent
to all town meeting participants upon conclusion of the discussion to solicit community input. A total of
342 community members completed the survey, and the results are included here. Section 2 highlights major
progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics
opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides
an overview of the physics motivations and goals associated with the EIC. Section 6 is devoted to the workforce
development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing
in Section 7. Section 8 describes the national need for nuclear data science and the relevance to QCD research.

1.2 Recommendations
We present the recommendations agreed on at the QCD Town Meeting along with the survey results to

indicate the strength of community support for each recommendation. The four recommendations listed here
received the consensus support of attendees at the QCD Town Meeting.

Recommendation 1: Capitalizing on past investments (Yes: 335; No: 3; No Answer: 4)

The highest priority for QCD research is to maintain U.S. world leadership in nuclear science for the next decade
by capitalizing on past investments. Maintaining this leadership also requires recruitment and retention of a
diverse and equitable workforce.

We recommend support for a healthy base theory program, full operation of the CEBAF 12-GeV and
RHIC facilities, and maintaining U.S. leadership within the LHC heavy-ion program, along with other
running facilities, including the valuable university-based laboratories, and the scientists involved in all
these efforts.
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This includes the following, unordered, programs:

• The 12-GeV CEBAF hosts a forefront program of using electrons to unfold the quark and gluon structure
of visible matter and probe the Standard Model. We recommend executing the CEBAF 12-GeV program at
full capability and capitalizing on the full intensity potential of CEBAF by the construction and deployment
of the Solenoidal Large Intensity Device (SoLID).

• The RHIC facility revolutionized our understanding of QCD, as well as the spin structure of the nucleon.
To successfully conclude the RHIC science mission, it is essential to complete the sPHENIX science
program as highlighted in the 2015 LRP, the concurrent STAR data taking with forward upgrade, and the
full data analysis from all RHIC experiments.

• The LHC facility maintains leadership in the (heavy ion) energy frontier and hosts a program of using
heavy-ion collisions to probe QCD at the highest temperature and/or energy scales. We recommend the
support of continued U.S. leadership across the heavy ion LHC program.

• Theoretical nuclear physics is essential for establishing new scientific directions, and meeting the chal-
lenges and realizing the full scientific potential of current and future experiments. We recommend
increased investment in the base program and expansion of topical programs in nuclear theory.

Recommendation 2: We recommend the expeditious completion of the EIC as the highest priority for
facility construction. (Yes: 325; No: 10; No Answer: 7)

The Electron-Ion Collider (EIC) is a powerful and versatile new accelerator facility, capable of colliding high-
energy beams ranging from heavy ions to polarized light ions and protons with high-energy polarized electron
beams. In the 2015 Long Range Plan the EIC was put forward as the highest priority for new facility construction
and the expeditious completion remains a top priority for the nuclear physics community. The EIC, accompanied
by the general-purpose large-acceptance detector, ePIC, will be a discovery machine that addresses fundamental
questions such as the origin of mass and spin of the proton as well as probing dense gluon systems in nuclei.
It will allow for the exploration of new landscapes in QCD, permitting the “tomography", or high-resolution
multidimensional mapping of the quark and gluon components inside of nucleons and nuclei. Realizing the EIC
will keep the U.S. on the frontiers of nuclear physics and accelerator science technology.

• Building on the recent EIC project CD-1 approval, the community-led Yellow-Report, and detector
proposals, the QCD research community is committed to continue the development and timely realization
of the EIC and its first detector, ePIC. We recommend supporting the growth of a diverse and active
research workforce for the ePIC collaboration, in support of the expeditious realization of the first EIC
detector.

• We recommend new investments to establish a national EIC theory alliance to enhance and broaden the
theory community needed for advancing EIC science and the experimental program. This theory alliance
will contribute to a diverse workforce through a competitive national EIC theory fellow program and
tenure-track bridge positions, including appointments at minority serving institutions.

Recommendation 3: Workforce and Conduct (Yes: 296; No: 19; No Answer: 27)

Increasing the U.S. QCD research workforce and participation of international collaborators is vital for the
successful realization of the field’s science mission. In addition, the nuclear physics research program serves
an important role in developing a diverse STEM workforce for the critical needs of the nation. Creating and
maintaining an equitable, productive working environment for all members of the community is a necessary part
of this development.

We recommend enhanced investment in the growth and development of a diverse, equitable workforce.

9



• Part of recruiting and maintaining a diverse workforce requires treating all community members with
respect and dignity. Supporting the recent initiatives by the APS (American Physical Society) and DNP
(Division of Nuclear Physics) to develop community-wide standards of conduct, we recommend that host
labs and user facilities require the establishment and/or adoption of enforceable conduct standards by all
of the experimental and theoretical collaborations they support. The enforcement of such standards is
the combined responsibility of all laboratories, theoretical and experimental collaborations, conference
organizers, and individual investigators supported by the nuclear physics research program.

• We recommend development and expansion of programs that enable participation in research by students
from under-represented communities at National Labs and/or Research Universities, including extended
support for researchers from minority-serving and non-PhD granting institutions.

• We recommend development and expansion of programs to recruit and retain diverse junior faculty and
staff at universities and national laboratories through bridge positions, fellowships, traineeships, and other
incentives.

Recommendation 4: Computing (Yes: 302; No: 20; No Answer: 20)

High-performance and high-throughput computing are essential to advance nuclear physics at the experimental
and theory frontiers. Increased investments in computational nuclear physics will facilitate discoveries and
capitalize on previous investments.

• We recommend increased investments for software and algorithm development, including in AI/ML, by
strengthening and expanding programs and partnerships, such as the DOE SciDAC and NSF CSSI and AI
institutes.

• We recommend increased support for dedicated high-performance and high-throughput mid-scale compu-
tational hardware and high-capacity data systems, as well as expanding access to leadership computing
facilities.

• Advanced computing is an interdisciplinary field. We recommend establishing programs to support the
development and retention of a diverse multi-disciplinary workforce in high-performance computing and
AI/ML.

1.3 Initiatives
The Initiatives listed here are the product of input from the QCD community. They represent a broad range

of projects and ideas that were proposed and discussed at the Town Meeting, but they do not necessarily have as
high or as focused priority that the Recommendations have.

Initiative: We recommend targeted efforts to enable the timely realization of a second, complementary
detector at the Electron-Ion Collider. (Yes: 262; No: 54; No Answer: 26)

The EIC is a transformative accelerator that will enable studies of nuclear matter with unprecedented precision.
The EIC encapsulates a broad physics program with experimental signatures ranging from exclusive production
of single particles in ep scattering to very high multiplicity final states in eA collisions. Two detectors will
expand the scientific opportunities, draw a more complete picture of the science, and mitigate the inherent risks
that come with exploring uncharted territory by providing independent confirmation of discovery measurements.
High statistical precision matched with a similar or better level of systematic precision is vital for the EIC
and this can only be achieved with carefully optimized instrumentation. A natural and efficient way to reduce
systematic errors is to equip the EIC with two complementary detectors using different technologies. The
second detector effort will rely heavily on the use of generic detector R&D funds and accelerator design effort to
integrate the detector into the interaction region. The design and construction of such a complementary detector
and interaction region are interwoven and must be synchronized with the current EIC project and developed in
the context of a broad and engaged international EIC community.
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Initiative: We recommend the allocation of necessary resources to develop high duty-cycle polarized
positron beams at CEBAF. (Yes: 192; No: 91; No Answer: 59)

Using the existing 12 GeV CEBAF and capitalizing on innovative concepts for a positron source developed at
Jefferson Lab, a high duty-cycle polarized positron beam will enable a unique science program at the luminosity
and precision frontier. It will comprise the mapping of two-photon exchange effects as well as essential
measurements of the 3D structure of hadrons. It will also offer new opportunities to investigate electroweak
physics and physics beyond the standard model.

The PEPPo experiment (2012) demonstrated a new technique for the production of polarized positrons (PRL
116, 2016) at the CEBAF injector. Since then, an extensive physics program has been developed. First presented
in 2018 to the Jefferson Lab Program Advisory Committee (PAC), it was then expanded and summarized in 20
peer-reviewed publications (EPJ A58, 2022). Two experiments were already approved by the Jefferson Lab
PAC in 2020. The PAC has encouraged a vigorous effort to explore the technical feasibility of such a unique
facility. A positron injector concept has emerged with the help of FY21 LDRD funds and an upcoming FY23
LDRD project will study the efficiency of transporting a beam with emittance comparable to the one expected in
a positron beam through CEBAF. Following these advances over the last decade, expeditious development of
this outstanding worldwide capability now appears achievable.

Initiative: Capitalizing on recent science insights and US-led accelerator science and technology inno-
vations, we recommend a targeted effort to develop a cost-effective technical approach for an energy
upgrade of CEBAF. This would provide capabilities to enable a worldwide unique nuclear science pro-
gram at the luminosity frontier. (Yes: 140; No: 147; No
Answer: 55)

The last decade has provided multiple science surprises such as the discovery of exotic states in the charmonium
sector at facilities worldwide, the so-called “XYZ” states. Studies of the 3D structure of hadrons and hadroniza-
tion provided deeper access to quark-gluon dynamics and opened new opportunities for understanding QCD
in its full complexity. In addition, mysteries of the visible matter around us remain unsolved, such as a small
enhancement of partons found in nuclei at the interface of the quark- and gluon-dominated regions, the so-called
“anti-shadowing” region, that to date lacks explanation and can only be further studied at the luminosity frontier.

Capitalizing on recent innovations enabled by accelerator science and technology, a cost-effective energy
upgrade of the 12-GeV CEBAF at Jefferson Lab to a 22 GeV facility may become feasible. Such an upgrade
would permit a worldwide unique nuclear science program with fixed targets at the luminosity frontier, roughly
five decades above that possible with a collider. Beyond its nuclear science opportunities, this will further
steward best-in-class accelerator technology within the US.

Initiative: U.S. Participation in LHC Detector Upgrades and Partnership with CERN Initiative
(Yes: 255; No: 49; No Answer: 38)

The LHC will remain at the energy frontier of nuclear and particle physics in the coming two decades. Detector
upgrades enabled by novel technologies will maximize the potential of the planned high luminosity upgrade and
open new opportunities in QCD research.

To maintain U.S. leadership in the nuclear physics program at the LHC, we recommend exploring and
supporting targeted detector R&Ds and upgrades to the LHC experiments, led by U.S. groups, that
provide unique capabilities. These projects will open new physics opportunities, further stimulate the synergy
between US-EIC and CERN-LHC in nuclear science, accelerator and detector technology, and also strengthen
partnerships with the international community.

Initiative: Exploring opportunities for US participation in international facilities at the high baryon
density frontier (Yes: 157; No: 129; No Answer: 56)
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We wish to maintain US leadership in the exploration of the QCD phase diagram at high baryon density after
the completion of the RHIC BES-II program and to build on the success of the BES program, including the
search for the QCD critical point, the extraction of the hyperon-nucleon interaction, and the determination of
constraints on the nuclear matter equation of state at high baryon density.
We recommend exploring opportunities for targeted US participation in international facilities that will
probe the physics of dense baryon-rich matter and constrain the nuclear equation of state in a regime
relevant to binary neutron star mergers and supernovae. The upcoming results from RHIC BES-II will help
assess which international experiments present the highest potential for new discoveries at high baryon density.

Initiative: Nuclear Data (Yes: 274; No: 22; No Answer: 46)

Nuclear data play an essential if sometimes unrecognized role in all facets of nuclear physics. Access to accurate,
reliable nuclear data is crucial to the success of important missions such as nonproliferation and defense, nuclear
forensics, homeland security, space exploration, and clean energy generation, in addition to the basic scientific
research underpinning the enterprise. These data are also key to innovations leading to new medicines, automated
industrial controls, energy exploration, energy security, nuclear reactor design, and isotope production. It is thus
crucial to maintain effective US stewardship of nuclear data.

• We recommend identifying and prioritizing opportunities to enhance and advance stewardship of nuclear
data and maximize the impact of these opportunities.

• We recommend building and sustaining the nuclear data community by recruiting, training, and retaining
a diverse, equitable and inclusive workforce.

• We recommend identifying crosscutting opportunities for nuclear data with other programs, both domesti-
cally and internationally, in particular with regard to facilities and instrumentation.

2 Progress Since the Last LRP
2.1 Progress in Hot QCD

Over the last several years major advances have been made through the experimental programs at RHIC and
the LHC. At RHIC, this includes the successful data taking within the Beam Energy Scan II (BES-II) program,
gathering unprecedented statistics on Au+Au collisions probing the QCD phase diagram from moderate to high
net baryon number densities, as well as the collection and analysis of data from the isobar program, which used
Ru+Ru and Zr+Zr collisions to search for the chiral magnetic effect (CME). At the LHC, the Run 2 heavy-ion
program provided more than an order of magnitude increase in luminosity for Pb+Pb collisions (compared
with Run 1) and explored the first experiments at LHC energies utilizing nuclei other than lead with Xe+Xe
collisions. Additionally, there has been a lot of progress in the relevant theory and computation, including
Bayesian analyses providing improved extraction of the QGP transport properties. This section highlights some
of the major advances in this area as well as connections between studies of the QGP and other areas of physics.

2.1.1 Macroscopic QGP Properties
A major goal of the study of heavy-ion collisions is to determine the properties of the hot and dense

matter created. This includes the QCD equation of state (see Sec. 2.1.6) and the transport properties of the
QGP, including its shear and bulk viscosities and the partonic transport coefficient q̂. While first-principles
calculations using e.g. lattice QCD or effective models can provide results for these properties, these methods
are either extremely difficult (in case of lattice QCD, from which so far only the equation of state at zero baryon
chemical potential, and the heavy quark diffusion coefficient have been reliably determined, see Sec. 3.1.2) or
only approximate QCD (see Sec. 3.1.3), such that comparison of phenomenological models to experimental
measurements provides the most fruitful approach to determine QGP properties. A representation of the evolution
of a heavy ion collision is shown in Fig. 2, indicating the different stages and time scales, and showing the various
final state particles that carry all accessible information. In the following we will discuss the most important
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observables that carry information on the macroscopic QGP properties and then move to discussing advances in
the phenomenological modeling and data-theory comparisons.

Initial energy
density
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Figure 2: The stages of a relativistic heavy ion collision. Figure adapted from [3, 4].

Experimental observables Over past years, experimental measurements to quantify bulk and collective
properties of the QGP have achieved a new level of precision for a wide variety of differential observables.
Azimuthal anisotropies of the transverse momentum distribution of produced particles, elliptic (v2) and higher-
order (vn) flow coefficients that are particularly sensitive to the QGP’s shear viscosity and equation of state, have
been measured to unprecedented precision over a wide range of a wide range of initial system size, collision
geometry, and phase space [5–14]. Figure 3 shows v2 and v3 results over a wide multiplicity (or, equivalently,
centrality) range in Au+Au, U+U, and d+Au collisions at RHIC (left panel) as well as in Pb+Pb, Xe+Xe, and
p+Pb collisions at the LHC (right panel), indicating collective flow of the medium, originally not expected in
case of small systems (see Sec. 2.1.5). For central collisions of large systems, the v2 and v3 data follow precisely
the trend expected by the initial geometry and its fluctuations. Extending to very peripheral regions where the
system size is diminishing, the finite system size effect and viscous corrections become significant. The observed
trends are captured by state-of-the-art hybrid hydrodynamic calculations from the most central events down to
dN/dη ∼ 10–20.

Additionally, new experimental techniques are expected to increase the precision of the QGP transport
property extraction in the near future. The vn of identified particles, especially those which contain strange
quarks, can test the expected mass dependence of hydrodynamic flow and can be used to constrain the impact
of the hadronic rescattering phase on the measured anisotropies [15–17] (the extension of these measurements
to hadrons containing heavy quarks is discussed in Sec. 2.1.3). Event-by-event fluctuations of the v2 flow
coefficient have been measured using multiparticle cumulants; these are used to extract moments of the vn

distributions [18–26]. Also, symmetric cumulants measure the correlated fluctuations of different orders of flow
coefficients [27–29]. Mixed-higher-order flow harmonics measured up to 7th order can uniquely probe linear and
nonlinear hydrodynamic responses [30, 31]. The vn-〈pT 〉 correlation, with unique sensitivity to the correlation
between the system size and shape, has already been used to constrain the shape of the xenon nucleus using
LHC Xe+Xe data [32, 33]; it also has the potential to disentangle different origins of momentum anisotropy
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[34, 35]. Further, femtoscopic observables are sensitive to the system size and provide additional information to
disentangle medium and initial state properties [36–41]. More observables, such as electromagnetic probes, hard
probes including jets and heavy flavors, as well as measurements at varying collision energy and for different
system sizes can aide in the determination of QGP properties. We will discuss each of them below.
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Figure 3: Experimental data on v2{2} and v3{2} from the STAR [42, 43], PHENIX [44], and ALICE [25]
Collaborations, with theory results from the IPGlasma+MUSIC+UrQMD model. Figure adapted from [45].

Phenomenological modeling of heavy ion collisions There has been significant progress over the last several
years in the modeling of heavy ion collisions over a wide range of energies and collision systems. In particular,
there has been progress in modeling the initial state (see Sec. 2.1.4), with three-dimensional dynamic initial states,
that progressively deposit energy into the hydrodynamic medium [46], with initial conditions for fluctuating
conserved charges [47], as well as extensions to three dimensions in the color glass condensate (CGC) based
models [48, 49]. Smoothly connecting the initial state to hydrodynamics has been significantly improved by
means of QCD effective kinetic theory [50].

Extending the applicability of fluid dynamics can also be achieved with anisotropic fluid dynamics, which
allows for larger differences between the longitudinal and transverse pressure in the system and therefore applies
at earlier times than second-order viscous hydrodynamics [51, 52]. Further extensions of fluid dynamics include
spin [53] and chiral currents [54, 55], triggered by interest in chiral magnetic effect and polarization observables
(see Sec. 2.1.7).

Equations of state were constructed with input from lattice QCD, in the space of temperature and chemical
potentials of the conserved charges [56–59], with some of them including a critical point (see Sec. 2.1.6 and
[60] for a review). These equations of state require extrapolations, for example into the region of high baryon
chemical potential where lattice QCD cannot directly provide results. Constraints in that region can be obtained
from thermal perturbation theory, effective models of QCD (see Sec. 3.1.3), or calculations of strongly-coupled
gauge theories that have known holographic duals, and are similar to QCD [61].

Progress has also been made in describing the evolution of hydrodynamic and critical fluctuations by
solving stochastic differential equations [62, 63] or employing the hydro-kinetic formalism [64–71], as well as
the conversion from fluids to particles that respects local conservation laws [72, 73]. Both developments are
particularly relevant for including effects related to the existence of the critical point. Core-corona models, in
which regions of high energy density are described using hydrodynamics, while low energy density matter is
described using particle degrees of freedom throughout the evolution, have also been advanced significantly in
the past years. Such models allow for a unified description across systems sizes and produced particle transverse
momenta [74].

Purely hadronic transport simulations are essential for constraining the dense nuclear matter equation of
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state (EOS) and interpreting experimental results from collisions at very low to intermediate beam energies,
√

sNN ≈ 1.9 to
√

sNN ≈ 8.0 GeV, where equilibrium is not typically expected to be reached, and, therefore, a
hydrodynamic description is not possible. Comparisons of hadronic transport simulations with experimental
data can reveal not only the EOS of symmetric nuclear matter [75–78], but can also help constrain the isospin-
dependence of the EOS (e.g., by using meson yields [79–84], proton and neutron flow [79, 85–90], or pion flow
[91]) and help understand strange interactions (e.g., by using strange particle flow [92–94]). The influence of the
possible QCD critical point on the hadronic evolution, either within purely hadronic transport simulations or
in afterburner calculations, can also be explored using hadronic potentials, enabling description of non-trivial
features at high baryon densities [95]. Significant theoretical, conceptual, and modeling work remains, however,
to ensure valid conclusions can be discerned from the heavy-ion data.

Extracting QGP properties using Bayesian inference An important tool that has helped precision extraction
of information is Bayesian inference, which has been increasingly used over the last few years to constrain the
temperature dependence of η/s and ζ/s, as well as other quantities such as q̂. Bayesian inference determines
the probability that certain values of shear and bulk viscosity, and any other model parameter, are consistent
with a set of measurements and their uncertainties. The resulting posterior probability distribution, which has
the dimension of the number of parameters, can be projected to lower dimensions by marginalizing over all but
one or two parameters, or by calculating credible intervals, providing interpretable constraints on the model
parameters.
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Figure 4: Constraints on η/s and ζ/s from Ref. [96], as represented by the 90% credible intervals for the posterior
and the prior, along with their corresponding information gain (Kullback-Leibler divergence DKL).

A number of different constraints on the QGP shear and bulk viscosities have been obtained over the past
decade [96–108]. The analyses differ because of the uncertainties in (i) modelling the pre-equilibrium stage, (ii)
the equation of state, (iii) the assumed functional form of shear and bulk viscosity, (iv) the higher-order transport
coefficients, and (v) the conversion from fluids to particles. An additional source of uncertainty is emulation,
often used to circumvent the otherwise prohibitive computational requirements of running the model. Critically,
the set of measurements used to calibrate the model vary considerably between the different analyses.

Reference [103] marked a step forward by studying simultaneously the temperature dependence of the shear
and bulk viscosities with flexible parametrizations and using a state-of-the-art model. The employed software is
publicly available and formed the basis of almost all Bayesian inference studies that followed. Reference [102]
and later Refs. [105, 106] added data from small system (p+Pb) collisions, with the later papers also including
a larger set of measurements in Pb+Pb collisions, a different pre-hydrodynamic phase, and a study of second
order transport coefficients. As an example, we show results for the posterior distributions of temperature
dependent bulk and shear viscosities (compared to the assumed priors) from Refs. [96, 104] in Fig. 4. These
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studies combined RHIC and LHC measurements, and included particlization uncertainties for the first time.
The difference between the prior and the posterior, quantified by the Kullback-Leibler divergence DKL in the
bottom panel of Fig. 4, highlights that most information is gained at temperatures below T = 200 MeV. How to
improve constraints at higher temperature is one of the major questions going forward. Additional advances in
the past years include (i) the use of closure tests [104, 109] as validation of Bayesian analysis and as a method
to estimate the impact of future measurements [107], (ii) non-parametric methods [110, 111] to reduce bias
when constraining model parameter that are functions rather than scalar values, and (iii) increasing attention to
correlations between measurements and their uncertainties [103, 104, 112–114].

2.1.2 Accessing QGP Evolution and Chiral Symmetry Breaking Using Electromagnetic Probes
By virtue of their negligible interaction with the quark-gluon plasma, electroweak probes provide invaluable

information on the physics of heavy-ion collisions. Low-energy photons and low-mass dileptons are radiated
directly by the hot and dense plasma produced in the collisions but then do not interact further with the QGP,
providing a window into the thermal properties of the plasma. Additionally, high-energy photons, dileptons
and weak bosons are mainly produced when the nuclei initially collide, and can provide important information
regarding the initial properties of the collisions [115].

Removing the contribution from photons emerging from hadronic decays leads to a “direct” photon signal.
Measurements of the low-energy direct photon spectra and azimuthal anisotropies, vγn, have been released by
ALICE, PHENIX and STAR. At RHIC, there is tension between the STAR [116] and PHENIX results [117–
119] for the photon spectra. Measurements are also available from ALICE at 2.76 TeV [120], which show an
enhancement over expectations based on perturbative QCD in the transverse momentum region of 2–5 GeV which
is consistent with the thermal radiation from the QGP. Values of vγn have been measured by both ALICE [121]
and PHENIX [122]. The results are found to be compatible with each other but the measured values are
systematically larger than the model results [123]. The source of this large vγn in the data is not understood.

Inclusive dileptons that include hadronic decays have been measured in ALICE [124] and found to be
consistent in the low-mass limit with inclusive real photon measurements. Measurements of dileptons for
collision energies between 19.6–200 GeV are also available [125–128]. Models that include an in-medium
broadening of the ρ-meson spectral function consistently describe the observed excess over the hadronic decay
contributions [129].

Significant advances have been made in the theoretical description of photon and dilepton production in
heavy-ion collisions. Calculations of the thermal production of photons [123, 130–137] and dileptons [138–140]
in viscous hydrodynamic backgrounds have been improved by including the effects of shear and bulk viscosity on
the emission rates [123, 130, 139, 141, 142], and electromagnetic emission channels have been included in the
hadronic transport stage [143, 144]. This brings the sophistication of thermal photon and dilepton calculations on
par with those of soft hadrons. Various new calculations of photon emission rates have emerged [131, 141, 144–
150], including from lattice QCD [151–155]. Results from Refs. [156–158] using anisotropic hydrodynamics
and electromagnetic emission rates from a momentum-anisotropic quark-gluon plasma further contribute to
better understanding non-equilibrium effects. Works on other topics include predictions for the direct photon
Hanbury Brown Twiss (HBT) interferometry [133], studying photons that originate from the hadronization
of intermediate energy hadrons [159], additional photon production mechanisms [160, 161], and relativistic
transport studies of electromagnetic probes [162].

Invariant mass spectra of dileptons also provide a unique opportunity to study the effects of chiral symmetry
restoration on hadrons, such as the ρ meson and its chiral partner, the a1. Vector meson spectral functions
in the medium can be computed in a variety of frameworks, including lattice QCD, massive Yang Mills, and
hadronic many-body theory, or the analytically-continued functional renormalization group (FRG) method [115].
Theoretical calculations predict melting of the ρ meson in the medium, indicating a transition from hadronic
degrees of freedom to a quark-antiquark continuum that is consistent with chiral symmetry restoration. This
picture is consistent [129] with dilepton data from NA60 [163] and STAR [164]. Furthermore, chiral partners
become degenerate at the ground state mass in a way that the chiral mass splitting disappears but the ground-state
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mass remains [115, 165].

2.1.3 QGP Tomography with Hard Probes
The goal of using hard probes to study the QGP is to understand the emergent phenomena which give rise to

the nearly perfect liquid QGP that has been described in previous sections. Hard probes, such as jets, open heavy
flavor and quarkonia, probe the QGP on varying short distance scales, as with a microscope. Because the QGP
is short-lived, the probes are generated in the same nuclear collisions which create the QGP itself. The three
Upsilon states and jets are examples of important probes. The Υ(1S ), Υ(2S ), and Υ(3S ) states each characterize
the QGP on a separate length scale that depends on its binding energy. Jets probe the QGP on a variety of length
scales depending on their energy and the characteristics of the jet structure. LRP15 [2] discussed the importance
of measurements of these observables at both RHIC and LHC in order to understand the temperature dependence
of QGP properties. Over the last several years there have been new measurements from LHC experiments and
the existing RHIC detectors. Crucially, sPHENIX is about to begin its physics program, which focuses on jets
and Upsilons.

Jets QCD jets arise from the hard scattering of quarks and gluons (collectively, partons) in hadronic and nuclear
collisions. This is a process that can be well described by perturbative QCD (pQCD) calculations [166, 167]. Jets
are measured as a collimated spray of particles carrying approximately the energy of the scattered parton. These
particles and/or their energies is clustered together to form measured jets. Some of the earliest measurements at
RHIC and LHC in heavy-ion collisions were about the reduction in the rate of these jets in heavy-ion collisions
compared to expectations from p+p collisions [168–172]. This phenomenon is called jet quenching. Our
understanding of how jets are quenched in heavy-ion collisions has evolved dramatically in the last several
years driven by increasingly precise and differential measurements from the LHC and RHIC and improvements
in theory. Additionally, the techniques used to measure jet substructure have advanced and the number of jet
substructure measurements available has increased dramatically. The current focus is on understanding how jet
quenching depends on the structure of the parton shower and the length of the QGP the jet travels though. In
addition to the modification and quenching of the jet itself it is of great interest to study how the QGP responds
to the passage of the jet through it. Some of the highlights are listed here.

The population of jets in heavy-ion collisions has been measured to have different internal structure [173–
176] and substructure [177, 178] than jets in p+p collisions. The distribution of jets as a function of the angle
between the two hardest subjets in the event, θg (or rg ≡ Rθg, where R is the jet cone size) has been measured
and is shown in Fig. 5. These studies have shown that wider fragmenting jets are suppressed more by the QGP
than narrower fragmenting jets, providing possible new connections to the color coherence length scale of the
QGP [179–182]: Only structures in the parton shower that are larger than the coherence scale are seen by the
QGP as separate color charges and thus quenched separately.

Measurements have been made of the interjet angular correlations in Pb+Pb collisions [170, 183–185].
Recent measurements have been inspired by calculations of potential quasiparticles in the QGP [186–190]. No
evidence of this has been found to date.

In addition to measuring the jet substructure directly, it is possible to change the quark and gluon fractions in
a particular jet sample with respect to the inclusive sample by looking at jets balanced by a photon or Z-boson
rather than another jet. At leading order, the dominant process for photon-jet production is q + g → q + γ,
which selects on quark jets. Additionally, it is possible to select on b-jets [191, 192], which also provides an
enhanced quark sample of jets. Due to the larger color charge of the gluon compared to the quark, gluon jets are
broader and expected to lose more energy on average than quark jets. Several measurements of b-jets found the
suppression to be consistent with inclusive jets [191, 193], while recent results for samples of jets with increased
quark fractions are found to have reduced jet quenching compared to inclusive jets [192, 193]. We note that
recent theoretical developments point to possible future methods for data-driven extraction of quark and gluon jet
modification in heavy ion collisions [194, 195]. Additional insights into the mechanisms of energy loss were also
obtained from studying the semi-inclusive distribution of jets recoiling from a high-pT trigger hadron [185, 196].

The response of the QGP to the passage of a jet is characterized by an increased amount of low momentum
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The ALICE experiment - A journey through QCD ALICE Collaboration

Figure 52, left panel, shows the measurement of zg, which exhibits no significant modification of the zg
distribution in Pb–Pb collisions compared to pp collisions. This is consistent within uncertainties with a
variety of jet quenching models, also shown.
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Figure 52: Jet zg (left) and qg (right) in 0–10% centrality for R = 0.2 charged-particle jets [640]. The ratio of the
distributions in Pb–Pb and pp collisions is shown in the bottom panels and is compared to various jet quenching
calculations.

These analysis techniques also enable measurements of the angular distribution qg, which has been pre-
dicted to be sensitive to the quark-gluon fraction, splitting formation time, and colour coherence [623,
625]. In contrast to the zg distribution, Fig. 52 (right) shows a significant narrowing of the qg (Rg) dis-
tribution in central Pb–Pb collisions compared to pp collisions, which provides direct evidence of the
modification of the angular scale of jets in the quark–gluon plasma. This narrowing is consistent with
models implementing (transverse) incoherent interaction of the jet shower constituents with the medium,
but also with medium-modified quark-to-gluon fractions and fully coherent energy loss; further mea-
surements will be needed to characterise the mechanism underlying the narrowing. Taken together, these
measurements suggest that the hard substructure of jets is consistent with (i) little-to-no modification
of the momentum splitting, and (ii) stronger suppression of jets with wide fragmentation patterns. This
indicates that the medium has a significant resolving power for splittings with a particular dependence
on the angular scale, preserving narrow jets or filtering out wider jets.

Jet shapes. Jet substructure observables can also be used to probe soft non-perturbative physics by
studying the distribution of radiation inside the jet, without selecting on the hard structure. Such un-
groomed observables can probe the interplay between the modification of the jet structure and the re-
sponse of the medium to the jet propagating through it.

Jet shape is measured both by jet-by-jet functions of the jet constituent momentum, such as jet mass
and width, and by inclusive and semi-inclusive measurements of intra- and inter-jet distributions, such
as the ratio of jet yields measured with different R. The jet-by-jet jet shapes in particular are sensitive to
the underlying soft physics. The first radial moment [641], or the angularity (girth or width), probes the
radial energy profile of the jet. The jet mass, which is related to the second radial moment [641], captures
the virtuality of the original parton that produced the jet and increases with increasing contribution of
large-angle, typically soft particles [642]. These observables are complementary to measurements of the
jet fragmentation using the longitudinal momentum fraction of the jet by ATLAS [612] and CMS [643]
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particles within and around the jet [171, 175, 205–208]. Reference [175] found an excess of particles in Pb+Pb
collisions relative to p+p collisions below 4 GeV inside the jet cone (of size R = 0.4). The size of this excess
was largely independent of the jet transverse momentum, suggesting that its properties were characteristic of
the QGP and not of the jet itself (see Fig. 6). The pT > 4 GeV component of the fragmentation function was
found to be qualitatively similar to that for jets in p+p collisions [209]. Measurements of the angular distribution
of the low momentum particles near the jet have shown that they have a wider distribution than those from the
jet itself [207, 208]. This suggests that measuring jets with increasingly large radii might allow recovery of the
energy lost by the jet and incorporated into the QGP. Measurements of the jet cone size dependence of the jet
yields in heavy-ion collisions have been made at RHIC [210] and the LHC [172, 211–213]. Jets with a large cone,
R = 1, were measured for the first time in Pb+Pb collisions [213] (see Fig. 6). This measurement is sensitive to
the interplay between the angular dependence of the energy lost by the jet and the energy incorporated into the
medium as medium response. The current measurement does not show a strong cone size dependence to the
jet quenching, in contrast to many, but not all, theoretical models. Tagged (e.g. with Z-bosons)jets can provide
further information on the parton medium interactions [214].

The azimuthal anisotropy, vn of jets [219, 220] and hadrons from jets [6] has been measured to be non-zero
in Pb+Pb collisions. The values of v2 are measured to be significantly larger than zero over a wide range of
centrality and to have a centrality dependence that is similar to that seen from hydrodynamic flow for lower
momentum particles. This is expected if the amount of jet quenching depends on the path length of the jet
through the QGP. In [221] v3 was found to be consistent with zero, while a non-zero v3 of jets was observed in
Ref. [220]. The v3 component can be explained by sensitivity to the geometrical fluctuations in the initial state
of the collision. The values of v4 are consistent with zero over all measured centralities [220, 221].

Over the last several years, there have been significant advances in the extraction of the parameter controlling
the strength of jet quenching in the QGP, q̂. Extractions from a number of groups use hydrodynamical models of
the QGP combined with state-of-the-art jet quenching calculations to extract q̂ from experimental data on the
RAA of jets and hadrons at the LHC and RHIC [110, 111, 113, 217] using Bayesian techniques. Improvements in
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the models and the experimental data have contributed to stronger constraints on the temperature dependence
of q̂. Figure 7 shows the q̂/T 3 extractions from four models [110, 113, 217, 218]. Reference [218] was published
in 2013 and has large uncertainties and a small temperature range. The more recent calculations [110, 113, 217]
provide much more information, however there is still tension between the three model results.

Open heavy flavor and quarkonia Heavy-flavor particles, charm and bottom quarks and the hadrons they
constitute, are versatile probes of the QCD medium formed in nuclear collisions [222, 223]. The heavy
quark mass, mQ, provides a large scale relative to typical temperatures in nuclear collisions, providing unique
opportunities to investigate the short distance scale behavior of the QGP [2, 224]. Suppression of quarkonia,
heavy quark-antiquark bound states, is sensitive to the temperature of the medium: different states dissociate at
different temperatures, depending on the size of the bound state [225]. Quarkonia may also be (re-)generated by
uncorrelated Q and Q coalescence when multiple QQ pairs are produced in a heavy-ion collision.

Calculational advances in the description of quarkonium and open heavy flavor production have been made
in a number of directions, including transport calculations, effective field theory approaches, and lattice QCD
calculations. The understanding of quarkonium dynamics inside the QGP was greatly advanced since LRP15 by
the application of the open quantum system framework (recent reviews can be found in Refs. [226–229]). Very
recently, the first 1/mQ-correction to the heavy quark diffusion coefficient has been worked out [230]. Significant
noise reduction was obtained in quenched QCD using gradient flow [231, 232]. Heavy quark diffusion has been
implemented in different transport approaches and used to constrain the QGP transport coefficients [233, 234].

Measurements of the Λc/D0 ratio in heavy-ion collisions at RHIC [235] and LHC [236–238] have provided
new constraints on models of hadron formation. Two coalescence models [239, 240], have been compared
to data from both RHIC and LHC [235–237], see Fig. 8. Other models have been compared to one of the
data sets [241–244]. More precise data, necessary to fully constrain heavy-flavor hadron formation in the
QGP, will be available in the future, see Sec. 3.2.3. In addition, recent data on the ratios D+

s /D
0 at both RHIC

and LHC [245, 246] show significant enhancement at intermediate pT relative to more elementary collisions,
suggesting that hadronization proceeds via coalescence in heavy-ion collisions. Measurements of B0

s/B+ in
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Figure 7: Four extractions of the
strength of the jet quenching parame-
ter q̂/T 3 as a function of the tempera-
ture T of the QGP. The figure is from
Ref. [110] and the calculations are from
Refs. [110, 113, 217, 218].
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transverse momentum compared to several models as discussed in the text.

Pb+Pb collisions are also available which hint at an enhancement of this ratio in Pb+Pb collisions compared to
p+p collisions [247].

Effective theories for charm and bottom quark jets in QCD matter have been developed [248, 249] and used
to improve the description of heavy flavor parton showers and advanced the understanding of heavy flavor jet
propagation in medium. At high pT , QCD predicts an energy loss hierarchy: ∆Eb < ∆Ec < ∆Eq < ∆Eg [250].
Heavy quark jet substructure can provide clean information on the “dead-cone” effect [251]. Following upon
lower energy results by CMS [191], ATLAS made the first observation of a larger RAA for b-quark initiated jets
than light quark jets [192]. The RAA of D mesons at RHIC and the LHC shows a suppression pattern similar to
that of light hadrons while RAA data from B decays show less suppression than charm, revealing the anticipated
mass hierarchy of parton energy loss [252–258]. Recent calculations have predicted that, for pT < 30 GeV, the
QGP-induced modification is largest for bottom quark jets [259]. This inversion of the mass hierarchy of jet
quenching relative to QCD expectations [251] can be explored by sPHENIX.

Lattice QCD-based studies determine the in-medium properties of hadrons and their dissolution through
correlation functions, the Laplace transform of the spectral function. The main challenge of reconstructing the
spectral functions is the limited Euclidean time direction extent. Lattice calculations of heavy flavor probes have
matured significantly since LRP15 For example, lattice calculations with Nτ = 12 [260] determined that the real
part of the potential is not screened and is, instead, about the same as that in vacuum [260]. The imaginary part
of the potential, on the other hand, is quite sizable and increases with both temperature and the quark-antiquark
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separation [260]. Current lattice data on charm fluctuations and charm baryon number correlations hint at
the existence of charm mesons and baryons above the crossover temperature [261], and bottomonium spatial
correlation functions provide constraints on the melting temperature of different bottomonium states [262].

To address medium thermalization and extract the heavy quark diffusion coefficient, high precision data on
the collective behavior of open heavy flavor hadrons, especially at low pT , are needed. At the time of LRP15,
little was known about charm quark diffusion due to the lack of experimental data so that the value of the charm
quark scaled diffusion coefficient, 2πTDs, extracted from various models, varied widely [224]. Recent data
provide precision measurements of D-meson RAA and v2 over a wide pT region at both RHIC and LHC (left
and center panels of Fig. 9) [256, 263–267]. The right-hand side of Fig. 9 shows the temperature dependence
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of 2πTDs [222], constrained to be ∼2–5 near Tc. The spatial diffusion coefficient is proportional to the charm
relaxation time, which can give a hint as to why charm participates in the flow of the system, as it was extracted
to be smaller than the system lifetime from D0 measurements [14, 268].

Quarkonium measurements have been carried out at RHIC and the LHC in a variety of small and large
systems. At

√
sNN = 200 GeV, the J/ψ is suppressed in the most central collisions by a factor of 4-5 at both mid

and forward rapidity [269]. Precise J/ψ data from d+Au [270] collisions at
√

sNN = 200 GeV showed a ∼ 60%
suppression at forward rapidity, making it clear that cold nuclear matter (CNM) effects are important [271]).
Incorporating these CNM effects, the RHIC quarkonium data are well described by transport calculations
including dissociation in the medium as well as production by coalescence. Transport models also provided
successful predictions for the energy dependence of J/ψ production at RHIC [272, 273] and LHC [274], with
coalescence playing an important role at the highest energies. Coalescence may also be responsible for J/ψ v2,
small at RHIC [275] but significant at the LHC [276]. The RHIC J/ψ v2 measurements in Au+Au collisions
will still improve through analysis of the final PHENIX data and data from future STAR runs.

Comparative studies of quarkonia production in small systems at RHIC [277–279] and at the LHC [280–284]
found a factor of two greater suppression of the ψ(2S) compared to the J/ψ at backward rapidity (where the
final-state multiplicity is highest) while the modifications are similar at forward rapidity. The strong ψ(2S)
suppression at backward rapidity may be due to the formation of small QGP droplets in p+A collisions. Similarly,
CMS has found a sequential suppression pattern of upsilon states in p+Pb collisions [285]. Measurements in
large systems [255, 286] and comparisons with calculations of transport and statistical models provide insight
into the existence and properties of charmonium states in the QGP at the LHC.

Detailed studies of the modifications of the three Υ states at the energy densities produced at RHIC and
LHC can provide strong constraints on models. At the LHC, CMS can fully resolve the three Υ states and has
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measured their modification in Pb+Pb collisions [287]. The existing Υ data from RHIC [288–290] are more
limited due to a combination of smaller production rates, acceptance, and mass resolution.

2.1.4 Initial State and Small-x
The description of the initial state in heavy ion collisions has improved due to the use of high precision

measurements of new observables and theoretical advances, for example the development of sophisticated three
dimensional and dynamical initial state models, and extensive Bayesian analyses.

Nucleon substructure has been found to play a crucial role, in particular in small collision systems, where
its inclusion is required to produce sufficient fluctuations to reproduce the anisotropy coefficients [102, 291].
Constraints on the subnucleon size scales have been obtained from both diffractive vector meson production at the
Hadron-Electron Ring Accelerator (HERA) [292] as well as studies of p + A collisions [102]. At small x, within
the CGC framework, direct constraints on the gluon distributions can be obtained from a variety of processes,
including diffractive dijet and vector meson production, deeply virtual Compton scattering, or inclusive dijet
production, and certain angular dependencies in all cases [293–296]. Once constrained by measurements of
these processes in ultraperipheral heavy ion collisions or future measurements at the EIC, the gluon distributions
(Wilson lines) can be directly used in the same framework to describe the initial state in heavy ion collisions
[297–301]. This includes the transverse spatial distribution as well as longitudinal dependence obtained from
small-x evolution [48, 49].

In addition to the initialization of the energy momentum tensor, sophisticated calculations require an initial
condition for the ideally three dimensional distribution of conserved charges, including net-baryon, isospin, and
strangeness densities (see e.g. [47]). Fluctuating initial net baryon distributions are particularly important when
exploring net-proton fluctuations in the search for the QCD critical point [60]. We will discuss other theoretical
aspects, including pre-equilibrium evolution and the transition to hydrodynamics, in Sec. 3.1.3.

It is also desirable to identify experimental information that isolates the impact of the initial conditions in
order to determine initial conditions and transport properties of the evolving matter individually. For example,
correlations of flow harmonics with the mean transverse momentum fluctuations have proven to be sensitive
to initial state properties like the nucleon size and nuclear deformation, while being mostly insensitive to the
transport properties of the medium [302, 303]. The nucleon size, or more precisely the hot spot size in the initial
energy density, has also been better constrained by using experimental information on the nuclear cross section
in Bayesian analyses [304, 305].

A powerful method to extract initial state properties is to consider collisions of systems with similar mass
but different structural properties and compute the ratio of a given observable O in collisions of isobars X and Y .
Such a study was performed already using 96Ru+96Ru and 96Zr+96Zr collisions at RHIC [306]. Ratios of more
than ten observables have been measured, all displaying distinct and centrality-dependent deviations of up to
8% from unity, two of which are reported in the right panel of Fig. 10 [306]. The ratios in central collisions are
mostly impacted by deformation, while in mid-central collisions they are impacted by the nuclear radius and
the surface diffuseness [307–310]. The behavior of v2 and v3 suggests a large octupole deformation in Zr, β3,Zr,
not predicted by mean field structure models [311]. Such rich and versatile information provides a new type of
constraint on the initial conditions.

Another promising experimental tool to reveal the initial state of heavy nuclei is through photon-induced
interactions, commonly known as ultra-peripheral collision (UPCs), for which the impact parameter b between
the two colliding nuclei is greater than the sum of their radii - 2RA. Here, one or multiple photons emitted from
one nucleus, interact with the other nucleus. Due to the large mass of the heavy nucleus, the emitted photons
have very small virtualities or transverse momenta. There are generally three types of UPC physics processes
studied: i) inclusive production; ii) semi-inclusive and/or jet production; iii) exclusive production. In the past
decade, most of the UPC measurements focused on exclusive production, dominated by diffractive vector meson
production. However, since LRP15, there has been an increasing number of studies on jet and inclusive particle
photoproduction. For reviews of UPCs, see Refs. [312–317].

Exclusive vector meson (VM) photoproduction at high energy can be described as a quasi-real photon
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Figure 10: Impact of isobar-like collisions on the initial condition of QGP. Better control on the initial condition
can be achieved by exploiting the constraints from both the ratios of final-state observables (v2 and v3 on the
right side [306]) and the nuclear structure knowledge (left side).

fluctuating into a quark-antiquark pair, which scatters off the target nucleus via a color neutral two-gluon
exchange and then forms a VM. The sensitivity of this process to the spatial shape of the target makes it
particularly valuable for constraining the initial conditions of nuclear collisions. At leading order, the cross
section of this interaction scales as the square of the gluon density, which makes it a sensitive probe of the
nuclear parton distribution functions (nPDFs). However, in a recent next-to-leading order (NLO) study [318],
the dependence on the gluon density is found to be different. Complementary studies of e.g. photoproduction
of dijets or open heavy flavor proceed via only a single gluon exchange, making them less sensitive to such
theoretical uncertainties. Here, the Q2 is set by the pair or dijet invariant mass, making it possible to probe parton
distributions over a wide range of Q2 with a single process.

Exclusive ρ0 and J/ψ production in UPCs have been systematically measured at RHIC and LHC [319–331].
Although the systematic uncertainty related to the incoherent background is large, Ref. [322] provided a first
measurement of parton distributions inside a heavy nucleus by Fourier transforming the ρ0 |t| distribution to
impact parameter space. A recent STAR measurement [332] of azimuthal correlations of ρ0 decays, has captured
the nuclear geometry of an Au nucleus via quantum interference, linking UPC physics to quantum information
science, and providing the first measurement of neutron skin from UPCs.

Measurements at the LHC [323–327, 329–331] have shown a significant suppression of exclusive J/ψ
photoproduction in heavy nuclei over a wide range of rapidity, with respect to a free nucleon. This observation
is qualitatively consistent with both the nuclear shadowing model in the leading twist approximation and
gluon saturation models. Besides UPC VM in heavy nuclei, new experimental measurements of exclusive
VM photoproduction in non-UPC heavy-ion collisions [333–335] can provide insight into the dynamics of
photoproduction and nuclear reactions. Measurements in asymmetric collision systems [336] can probe the
structure of the smaller nucleus at small x.

Exclusive dijets in Pb+Pb UPCs have recently been measured by CMS [337]. The dijet system can be used
to reconstruct the initial scattering kinematics, and study the nPDFs, providing early access to some of the
important physics goals of the EIC. Dijet events have also been observed by ATLAS in events with no activity in
either Zero Degree Calorimeter (ZDC) (0n0n), and the distributions have been found to resemble expectations
from diffractive dijet production [338]. Diffractive dijet production is sensitive to the gluon distributions in
nuclei, as well as their polarization, which is expected to lead to distinctive angular correlations [294, 339]. CMS
measured angular correlations between two jets in events with rapidity gaps in both directions [337]. Model
comparisons [340–342] indicate that more work is needed to fully capture the interesting underlying physics.

2.1.5 Small Size Limit of the QGP
The discovery of flow-like signatures in p+p and p+Pb collisions at the LHC [343–346] opened up a new

field of study of the small size limit of QGP formation (for recent reviews see Refs. [347, 348]). Studies
revealed a striking collective behavior of the measured vn for particles emitted in p+p and p+Pbcollisions [17,
23, 28, 349–355]. A stringent control experiment was performed at RHIC, using three small collision systems:
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Figure 11: Measurement of v2 (top) and v3 (bottom) for charged particles in p+Au, d+Au, and 3He+Au collisions
as a function of pT . Calculations from two hydrodynamic models [356, 357] and a CGC based model [358] are
shown. Figure from Ref. [9].

p+Au, d+Au, and 3He+Au. The observed v2 and v3 results were found to agree with calculations in which
the vn values have their origin in the hydrodynamic evolution of the initial collision geometry in the three
systems [9], confirming expectations that the geometry of the initial collision drives the observed vn values
in small systems. The measurements in the three collision systems, shown in Fig. 11, agree well with two
hydrodynamic calculations [356, 357] and disagree with a calculation based on a picture where the observed
anisotropies have non-hydrodynamic origin [358]. However, the vn signal is found to be sensitive to the choices
of η range used in the two-particle correlation method [359], which suggests either a significant longitudinal
decorrelation effect or a possible role of subnucleonic fluctuations (also see [359]). Measurements of the
production of strange hadrons in high multiplicity p+p collisions smoothly connect to what is seen in p+Pb
collisions [360], with this trend continuing towards the largest systems. Additionally, v2 and v3 have been
shown to be finite in high multiplicity photo-nuclear Pb+Pb collisions [361] (but consistent with zero in e+ + e−

[362], e + p [363, 364], and γ + p [365] collisions). In high multiplicity photo-nuclear Pb+Pb collisions, the
dominant processes are those in which the photon fluctuates into a vector meson such as the ρ or ω [312], which
then interacts with the lead nucleus in much the same way a proton would. First hydrodynamic calculations
applied to this system show behavior consistent with experimental results [366]. The signatures of collectivity in
small systems have expanded the range of systems in which the QGP is studied and hydrodynamic models are
challenged to be reliable in these smaller, more intense, shorter lived systems. The theoretical challenges are
discussed in more detail in Sec. 3.1.3.

In addition to hydrodynamic signatures, hints at a modification of the hadron formation process for mesons
containing heavy quarks has been observed in small collision systems relative to expectations from e+e− collisions.
These measurements are related to similar measurements in heavy ion collisions discussed in Sec. 2.1.3. LHCb
has measured the charged particle multiplicity dependence of the B0

s/B0 ratio as a function of the multiplicity of
charged particles in p+p collisions [367]. They have found that the ratio shows little multiplicity dependence for
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Figure 12: Ratio of B0
s/B0 in p+p collisions as a function of the charged particle multiplicity scaled by the average

multiplicity in p+p collisions for three meson pT selections: 0–6 GeV (left), 6–12 GeV (middle), 12–20 GeV
(right). Expectations for production using the PYTHIA generator (with and without color reconnections) are
also shown, along with the ranges measured previously in e+e− collisions. Figure from Ref. [367].

high transverse momentum mesons, but has a clear increase with the number of charged particles for mesons
with pT < 6 GeV, see Fig. 12.

QGP formation is typically accompanied by evidence of jet quenching. However, no direct evidence of jet
quenching has been found in small collision systems [368, 369]. The nuclear modification factors for jets [370–
373] and hadrons [368, 374–376] show no significant suppression at mid-rapidity, and measurements of the
semi-inclusive distribution of charged jets recoiling from a high pT hadron trigger indicate little to no energy
loss in small systems [377]. One indirect suggestion of jet quenching is the observation of a non-zero v2 for
charged particles in p+Pb collisions at high pT [378]. In Pb+Pb collisions, the non-zero v2 is typically attributed
to the path length dependence of jet quenching within the QGP. However, in p+Pb collisions, these charged
particles are not significantly suppressed and no existing model has been able to explain both the overall rate and
the v2 of these high pT charged particles in p+Pb collisions. The origin of this effect in p+Pb collisions is not
known. Observation of heavy flavor hadron v2 in p+p and p+Pb also provides indirect evidence for interactions
of hard probes with a QGP medium in small systems [379–383].

The most direct way to understand this potential tension is to measure small, symmetric collisions at RHIC
and the LHC. O+O collisions have been run at RHIC and proposed for the LHC in Run 3. This system avoids
the large theoretical and experimental uncertainties associated with jet quenching measurements in peripheral
collisions and provides a system size, in terms of the number of participating nucleons, very similar to peripheral
Pb+Pb collisions. This will provide a benchmark for how much jet quenching (if any) is present in such small
collision systems, and provide the crucial link between understanding the QGP in large, symmetric collision
systems and small asymmetric collision systems.

2.1.6 Mapping the QCD Phase Diagram
Based on lattice QCD calculations, the QGP-hadron gas transition at vanishing net-baryon density is

understood to be a smooth crossover with the transition temperature Tc = 156 ± 1.5 MeV [384]. Model studies
indicate a first-order phase boundary at large net-baryon density (baryon chemical potential µB) [385]. If there is a
crossover and a first order transition line, they will be joined at the QCD critical point [386–388]. State-of-the-art
lattice calculations further predicted that the chiral crossover region extends into the finite chemical potential
region µB/T ≤ 2 [389], see Fig. 13. Precise calculations in the higher µB region become more difficult and
experimental measurements are essential to determine if a QCD critical point exists.

The BES program at RHIC, colliding heavy nuclei in the center of mass energy range
√

sNN = 3 – 200 GeV,
was initiated in 2008 in order to search for the QCD critical point and study the nuclear matter EoS in the high
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Figure 13: Left: Sketch of the QCD phase diagram, incorporating a conjectured critical end point and first order
transition. The yellow line indicates the region of the phase diagram where lattice QCD can reliably predict
the smooth crossover region of the hadron-QGP transition, up to µB/T ≤ 2. Figure adapted from [2]. Right:
Energy dependence of the net-proton (filled circles) and proton (open squares) high moments from Au+Au
collisions [390–392]. Model results from Hadron-Resonance Gas (HRG) model [393], and UrQMD [394, 395]
are shown. The thin red and blue dot-dashed lines are qualitative predictions [396] in the presence of a critical
point. Adapted from Ref. [392].

baryon density region [2, 224]. The BES phase-I (BES-I) program was conducted during 2010–2014, covering
the collision energies between 7.7 and 200 GeV (solid white line in Fig. 13 (left) indicating the µB range). BES-II
took place during 2019–2021, focusing on the center of mass energy range

√
sNN = 3 – 19.6 GeV (dashed white

line in Fig. 13). While data from the energy range 7.7 – 19.6 GeV were collected in collider mode, data from
fixed-target mode was also collected in the range 3 – 13.1 GeV (see e.g. [397]). In the overlapping energy range,
the event statistics from BES-II were improved by a factor of 20 to 40 compared to that of BES-I. In order to
reach the desired luminosity, RHIC underwent an electron cooling upgrade, Low Energy RHIC electron Cooling
(LEReC), which began operation during the BES-II RHIC Runs in 2019–2021. To maximize the physics output,
the STAR detector has implemented a series of key subsystem upgrades: the inner Time Projection Chamber
(iTPC), the Event Plane Detector (EPD) and the endcap Time-of-Flight (eTOF) Detector to enhance particle
identification capabilities and extend kinematic coverages.

All of the BES-I data have been analysed and most of the results are published. Evidence for the dominance
of the QGP phase or the hadronic phase at different collision energies have been demonstrated in three key
observations. (i) High-pT Parton Energy Loss: the strong suppression in the leading hadron RAA at pT ≥ 5
GeV/c, a signature of the formation of QGP, in central Au+Au collisions at

√
sNN = 200 GeV was found to

gradually disappear and RAA became even larger than unity in central Au+Au collisions for energies lower than
19.6 GeV [398]. (ii) Partonic Collectivity: Quark number scaling, found in the v2 for all hadrons, an indication
of QGP formation, has been found to persist down to 7.7 GeV Au+Au collisions [399]. This implies that the
partonic degrees of freedom remain dominant in these collisions. (iii) Critical Fluctuation: Moments (and their
ratios) of net-baryon fluctuations are expected to be sensitive to the existence of critical point and phase boundary.
High moments of net-protons (a proxy for net-baryons) from central 200 GeV in Au+Au collisions, C4/C2,
C5/C1, and C6/C2, are all found to be consistent with lattice QCD predictions of a smooth crossover chiral
transition [384, 400–402]. Hydrodynamic calculations of non-critical contributions to proton number cumulants
indicate that the Au+Au data are consistent with non-critical physics at center of mass energies above 20 GeV
[403]. In Au+Au collisions at 3 GeV, on the other hand, hadronic interactions are evident from the measurements
of moments of proton distributions, collective flow and strangeness production [392, 404, 405]. These results
imply that the QCD critical point, if it exists, should be accessible in collisions with center of mass energies
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between 3 and 20 GeV.
Figure 13 (right) shows recent results on the fourth-order net-proton and proton high moments in central

Au+Au collisions measured in BES-I [392, 400, 406] compared to models. The thin red and blue dot-dashed
lines are expected from a qualitative prediction [396] due to critical phenomena. The hadronic transport model
Ultrarelativistic Quantum Molecular Dynamics (UrQMD) [394, 395] and a thermal model with a canonical
ensemble [393] represent non-critical baselines. Current error bars do not allow for a clear conclusion, but
RHIC BES-II results will provide significantly improved statistical precision (and likely reduced systematic
uncertainties), as indicated by the green band in the figure. The extended acceptance and particle identification
in a larger rapidity region (from |y| <0.5 to |y| <0.8) will allow more systematic investigation into the nature
of these fluctuations. Much progress has also been made by the BEST Collaboration [60] and others towards
establishing a framework for calculations of observables sensitive to the critical point and a first order phase
transition. This includes lattice QCD and effective field theory calculations, further discussed in Sec. 3.1.3, as
well as improvements to the initial state and hydrodynamic description, especially the inclusion of propagation
of stochastic and critical fluctuations, discussed in Sec. 2.1.1.

2.1.7 Chirality and Vorticity in QCD

Searches for the chiral magnetic effect The creation of electric current in the direction of a magnetic field
due to the imbalance of chirality is called the chiral magnetic effect (CME). A decisive experimental test of
this phenomenon in a QCD medium has been among the major scientific goals of the RHIC and LHC heavy
ion programs. The existence of the CME in the QCD medium formed in relativistic collisions would establish
the existence of chiral fermions over sufficient timescales and therefore the restoration of chiral symmetry of
QCD in these collisions. It would also indicate that such collisions form regions of space where the left-right
symmetry (UA(1)) is broken by local P and CP symmetry breaking in the strong interaction. Finally, it would
also prove that ultra-strong electromagnetic fields are created in such collisions [407, 408]. Other observables
potentially sensitive to the creation of a strong magnetic field were also discussed in the literature [409–413].

STAR overview, P. Tribedy, QM 2022, Krakow, Poland 8
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Figure 14: Ratios of observables in Ru+Ru over Zr+Zr collisions from the STAR isobar blind analysis [306].
The ratios of the CME-sensitive observables (solid markers) are found to be below unity and close to the ratio of
inverse multiplicities (Noffline

trk ). The tan and aqua bands show background estimates calculated using data and the
HIJING model [414]. No significant CME signal difference between the two isobars is observed.

In heavy-ion experiments, a signal of the CME is the separation of charge across the reaction plane,
oriented perpendicularly to the magnetic field direction in non-central collisions [415]. Evidence of such charge
separation was first reported by the STAR collaboration in Au+Au and Cu+Cu collisions [416]. However,
backgrounds driven by flow, coupled with local charge conservation [417–421] and non-flow effects, dominate
the measurements [267, 416, 422–435]. A similar charge separation observed in small colliding systems, where
there is no correlation between the magnetic field direction and reaction plane, at both the LHC [428] and RHIC
[431] confirmed the dominance of the background. Subsequent measurements used novel approaches to reduce
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or eliminate background contributions to the CME. Using event-shape engineering techniques, the CMS and
ALICE collaborations found an upper limits of 7% and 26%, respectively, for the CME contribution to the
measured signal at 95% confidence level in Pb+Pb collisions at the LHC [429, 430]. Studying charge separation
as a function of pair invariant mass, the STAR collaboration found an upper limit of 15% CME contribution to
the measured signal at the 95% confidence level in Au+Au collisions at RHIC [432]. Using the spectator and
participant planes STAR measurements indicate a possible 10% CME signal at a significance on the order of 2
standard deviations in Au+Au collisions at 200 GeV [433].

By far the most controlled and precise CME search was performed by the STAR collaboration using the
collisions of isobars Ru+Ru and Zr+Zr at RHIC [306]. Ru+Ru collisions are expected to produce an about 5–9%
larger B field than Zr+Zr, hence a 10–18% larger CME signal because of its B2 dependence. The RHIC running
conditions for Zr+Zr and Ru+Ru collisions provided stringent controls on the systematic uncertainties. The
STAR collaboration performed a blinded analysis. The results are shown in Fig. 14. The ratio of CME-sensitive
observables in Ru+Ru over Zr+Zr is found to be below unity with a precision down to 0.4% indicating no
pre-defined signature of CME is observed. Estimates of background using data and HIJING, shown by bands on
Fig. 14, indicate no significant CME signal difference between the two isobars; a quantiative determination of an
upper limit is underway [414].

Vorticity Despite early predictions [436, 437] of hadronic polarization resulting from a rotating QGP, the
first observation [438] of the phenomenon was a nonvanishing Λ/Λ polarization at midrapidity along the
direction of the global angular momentum Ĵ, in semi-peripheral collisions at RHIC BES energies. Many viscous
hydrodynamic calculations were able to reproduce the observations without special “tuning,” using a generalized
Cooper-Frye formula [439] to connect the fluid to particle degrees of freedom; in this freezeout scenario, fluid
vorticity is essentially a spin chemical potential. This achievement alone is a nontrivial confirmation of the
validity of the hydrodynamic, local-equilibrium paradigm underlying our understanding of the bulk system
created in heavy ion collisions. This connection was strengthened by subsequent observation [440] of Ξ and Ω

global polarization at RHIC.
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Despite the fact that higher
√

sNN implies larger system angular momentum overall, most models reproduce
the observed trend of increasing polarization with decreasing collision energy. Recent measurements (see Fig. 15)
by the STAR [441] and HADES [445] collaborations show maximum polarization near the threshold energy for
Λ production. It is surprising that a hydrodynamic description [451] seems to hold at such low energies.

A “splitting” between the global polarization of Λ and Λ may be used to estimate [439] the magnetic field at
freezeout, input highly relevant for studies of the CME (see Sec. 2.1.7). The slight but statistically insignificant
tendency for P

Λ
> PΛ in the early data prompted measurements at

√
sNN ≈ 20 GeV by STAR with much
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higher statistics and an upgraded event-plane detector [452]. The resulting null splitting yields a much tighter
conservative upper bound (95% confidence level) of B ≤ 3 × 1013 T, ruling out several theoretical estimates of
the B field. At

√
sNN = 200 GeV, the bound is even tighter, B ≤ 3 × 1012 T [453].

In non-central heavy ion collisions, anisotropic transverse flow necessarily generates vorticity in a fluid
picture, leading to predictions [454, 455] of polarization along the beam direction Pẑ, oscillating as a function of
azimuthal angle. This expectation has been borne out by the observation of longitudinal polarization relative to
the second- and third-order event planes at RHIC [456] and LHC [457]. Surprisingly, however, the observed
oscillation of Pẑ was 180◦ out of phase with predictions. This has led to a realization of overlooked shear terms
in the hydrodynamic equations that contribute to polarization; different treatments [458–461] of these terms have
been proposed and there is not yet consensus on the correct formulation.

2.2 Progress in Cold QCD
Hadrons, with protons and neutrons (the nucleons) the most ubiquitous, make up the majority of the visible

matter in the universe. Thus, understanding their structure is of fundamental importance. The nucleon forms
a frontier of subatomic physics and has been under intensive study for the last several decades. Tremendous
progress has been made in mapping out the one-dimension momentum distribution of the nucleon constituents, in
the form of the Feynman parton distribution functions (PDFs). These investigations not only unveil the partonic
structure of the nucleon, but also provide an important opportunity to study the strong interaction. Still, essential
questions remain to be answered. How do the spin and orbital degrees of freedom of quarks and gluons within
the nucleon combine to make up its total spin? What is the origin of the mass of the nucleon and other hadrons?
Do gravitational form factors inform us about the origin of mass and can they be extracted from measurements?
Where are the quarks and gluons located within the nucleon? How does the quark-gluon structure of the nucleon
change when it is bound in the nucleus? What is the spectrum and structure of conventional and exotic hadrons?
All these questions have stimulated further theoretical and experimental investigations in hadronic physics and
major facilities have been and will be built to explore them.

Since LRP15, there has been significant progress in cold QCD research in the US and abroad. First, the
CEBAF 12 GeV upgrade has been completed and the experimental program is in full swing. Second, fruitful new
and exciting results have been obtained from various hadron physics facilities, including CEBAF at JLab, RHIC
at BNL, and the LHC at CERN. These advances covered static properties and partonic structure of hadrons,
nuclear modifications of the structure functions and nucleon many body physics in nuclear structure, and dense
medium effects in cold nuclei. These new results test the fundamental properties of QCD such as its chiral
structure and predictions for new hadron states, preview the tomography imaging of the nucleon that will help to
unveil the origin of the mass and spin, and deepen our understanding of nucleon-nucleon interactions to form
atomic nuclei and the partonic structure of a dense cold medium. More importantly, these advances pave the
way for answering the aforementioned fundamental questions. Meanwhile, all this progress has strong overlap
with hot QCD, nuclear structure and fundamental symmetry physics. Along with the experiment achievements,
theoretical developments have played a significant role, not only in the interpretation of experimental data, but
also in stimulating the programs at these facilities. In the following, we will highlight these advances.

2.2.1 Properties of Hadrons
We start with long-range nucleon structure. This includes the proton (electric) charge radius, generalized

polarizabilities and electromagnetic form factors of the nucleon. An additional relevant topic is the neutral pion
lifetime measurement that tests the chiral anomaly of QCD.

Proton charge radius For nearly half a century the root-mean-square charge radius (rp) of the proton had been
obtained from measurements of transitions between atomic hydrogen energy levels and by scattering electrons
from hydrogen atoms. Until recently, the proton charge radius obtained from these two methods agreed with one
another within experimental uncertainties. In 2010, the proton charge radius was obtained for the first time by
precisely measuring the Lamb shift of muonic hydrogen [462]. The charge radius of the proton obtained from
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Figure 16: The PRad rp result shown along with the projected result for PRad-II and other measurements.

muonic hydrogen was found to be significantly smaller than that obtained from ordinary hydrogen. This was
called the proton charge radius puzzle and led to a rush of experimental and theoretical efforts to understand
the difference in the proton size between ordinary hydrogen and muonic hydrogen. The Proton Charge Radius
(PRad) experiment at JLab was one such new effort which utilized several innovations and studied electron
scattering from ordinary hydrogen atoms to high precision. It was the only lepton scattering experiment to use
an electromagnetic calorimeter and a windowless hydrogen gas flow target, allowing robust extraction of the
proton charge radius from form factors measured in a very low Q2 range of 2×10−4 to 6×10−2GeV2. The PRad
result, shown in Fig. 16, was found to be in agreement with the small radius measured in muonic hydrogen
spectroscopy experiments as well as some of the recent ordinary hydrogen spectroscopy measurements [463].
The PRad result provided critical input to the recent revision of the Committee on Data of the International
Science Council (CODATA) recommendation for the proton charge radius and the Rydberg constant as noted
in the most recent review [464]. A followup experiment, PRad-II, is being planned to reach an even smaller
uncertainty, see Section 3.3. In addition, other measurements, such as the US-led Muon Scattering Experiment
(MUSE), will address the puzzle by measuring elastic muon scattering on the proton, see Section 3.4.

Nucleon form factors at high-Q2 and two-photon exchange physics Apart from the charge radius determina-
tion from the low Q2 measurement, nucleon form factors provide information on the fundamental constituent
structure of the nucleon, and at times reveal our lack of understanding in related topics. Specifically, the proton
electric-to-magnetic form factor ratio determined from the polarization transfer method had revolutionized the
basic understanding of the constituent structure of the proton [469, 470]. The discrepancy observed between
these measurements and those from the (traditional) Rosenbluth separation method, see left panel of Fig. 17,
has stimulated theoretical investigations into the two-photon exchange (TPE) contribution, currently considered
as the leading explanation. While a number of recent measurements have shown evidence for sizable TPE
in several different observables, the situation is far from resolved. For example, several recent experiments
were carried out to directly measure TPE by looking for a difference in the unpolarized positron-proton and
electron-proton elastic cross sections, including the OLYMPUS experiment at DESY [466], and those utilizing
CLAS at JLab [467, 471] and the VEPP-3 storage ring at Novosibirsk [468]. The results of these experiments
are shown in the right panel of Fig. 17. The data favor a non-zero slope as a function of the virtual photon
polarization parameter, ε, which is a sign of TPE. However, these data are limited to the low Q2 region, and are
closer to unity than needed to fully explain the proton form factor discrepancy. New measurements with greater
kinematic reach are needed to fully explain the proton form factor discrepancy and to guide theoretical efforts.
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Figure 17: (Left) Direct Rosenbluth separation results for
√

RS ( = µpGE /GM in the one-photon exchange
approximation). The black solid (red dashed) curve shows the results of the fit to the cross section data with
(without) the new GMp12 data (“This work") [465]. The blue dot-dashed curve shows µpGE /GM from a fit to
the polarization data. (Right) The ratio of positron-proton to electron-proton elastic cross sections as a function
of ε, as measured by OLYMPUS [466], CLAS [467], and at VEPP-3 [468]. The data are generally closer to
unity than the expectation if the difference between the Rosenbluth separation and polarization method is fully
attributed to two-photon exchange effects.

This is one of the major motivation for the proposed positron beam program at JLab, see Section 3.3.9, as well
as for the proposed TPE Experiment (TPEX) at DESY.

Nucleon polarizabilities and generalized polarizabilities Nucleon polarizabilities and generalized polariz-
abilities describe how the charged internal constituents of the nucleon react to external electromagnetic fields and
precisely determine the mean-square electromagnetic polarizability radii of the proton. Extracting them from
the real Compton scattering (RCS), virtual Compton scattering (VCS) and double virtual Compton scattering
(VVCS) processes provides stringent tests of Chiral Effective Field Theory (χEFT) [472–474] and lattice QCD
computations [475]. They are also essential to extract the hyperfine splitting of muonic hydrogen [476]. Since
the 2015 LRP, substantial progress has been made in determining both scalar and spin-dependent static and
dynamical polarizabilities of the proton and neutron [477–480], with strong international efforts and synergistic
advancements in experiment and theory [475]. For the proton, key achievements are the first extraction of
proton spin polarizabilities from the measurements of double polarization observables by the A2 Collaboration
at the Mainz microtron (MAMI) [481, 482], and new high precision data for unpolarized cross sections and
photon beam asymmetry from both MAMI [483] and the High Intensity Gamma-ray Source (HIGS) [484]. At
HIGS, expertise and techniques have been developed that produce the requisite high-precision RCS cross section
measurements on light nuclei [485, 486], which can be used to determine the neutron polarizabilities.

Meanwhile, four high-precision experiments at JLab mapped the very low Q2 behavior of the VVCS
generalized forward spin polarizability γ0(Q2) [511–513], and of the generalized longitudinal-transverse spin
polarizability δLT(Q2) [513, 514], for both proton and neutron. A fifth experiment measured the VCS generalized
polarizabilities αE(Q2) and βM(Q2) for the proton [493] at intermediate Q2. While some of the results agree
with the latest χEFT calculations, no single calculation describes all of the data well. For example, the observed
behavior of αE(Q2) (left panel of Fig. 18) is in sharp contrast with the current theoretical understanding that
suggests a monotonic decrease with increasing Q2. Similarly, data on the neutron VVCS spin-dependent
generalized polarizability δn

LT(Q2) [504] (right panel of Fig. 18) indicate a small, or even negative, value at
very low Q2 and a positive slope, in contrast with predictions from χEFT [506–509] and the phenomenological
MAID model [510]. These new data pose a challenge to χEFT and serve as high-precision benchmark data for
future non-perturbative QCD calculations.
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Figure 18: Left: world data [483, 487–497] for the proton electric αE(Q2) VCS generalized polarizability.
The filled symbols mark the recent experiments from MAMI [489–491] (green and black solid circles) and
from JLab [493] (blue solid circles). The dispersion-relations (DR) and low-energy-expansion analysis results
are shown with open circles and square symbols, respectively. The theoretical calculations of BChPT [498],
NRQCM [499], LSM [500], ELM [501] and DR [472, 502, 503], as well the experimental fit of the electric
generalized polarizability that includes all the world data are also shown. Right: The VVCS generalized
longitudinal-transverse spin polarizability δn

LT(Q2) for the neutron measured recently at JLab (blue circles [504])
and compared with a previous JLab measurement (red triangles [505]), early χEFT calculations (green [506] and
red lines [507]), state-of-the-art χEFT calculations (blue [508] and pink [509] bands), and the phenomenological
MAID [510] model.

Precision measurement of the neutral pion lifetime Two fundamental symmetries in QCD are directly in-
volved in both the existence and the lifetime (τ) of the neutral pion (π0): the left-right chiral and axial symmetries.
The explicit axial symmetry breaking, due to quantum fluctuations, gives rise to one of the most interesting
effects in nature, the chiral (or axial) anomaly. This process is purely responsible for the neutral pion decay
into two photons (π0 → γγ), defining its unusually short lifetime. The PrimEx collaboration measured the
neutral pion decay width Γ(π0 → γγ) in JLab Hall B with an unprecedented precision [515]. With its 1.50%
total uncertainty, τ = 8.337 ± 0.056(stat.) ± 0.112(syst.) × 10−17s, this is the most precise measurement of this
critically important quantity, and firmly confirms the prediction of the chiral anomaly in QCD at the percent
level. It also played a critical role in the normalization of the neutral pion transition form factor to constrain the
hadronic light-by-light scattering contributions to the well-known muon (g-2) anomaly in search of new physics.

2.2.2 One-dimensional Momentum Distributions of the Nucleon

Parton distribution functions Understanding the proton’s composition from its underlying constituent quarks
is one of the primary goals of all electron-proton scattering experiments. Of particular value is the method of
deep inelastic lepton-nucleon scattering (DIS), for which data are typically interpreted in terms of the PDFs
that describe the momentum distributions of partons in the (one-dimensional) direction parallel to the nucleon
momentum. Tremendous progress in our understanding of the PDFs has been made, most notably in the global
effort to determine both quark and gluon PDFs from various high energy experiments, see e.g. [516–519].
Furthermore, the desire to understand PDFs at a more fundamental level is driving experimental programs at
both low and high energy facilities.

The asymptotic behavior of the ratio of PDFs in the deep valence quark region x→ 1 can test a variety of
theoretical predictions. One such ratio is the d over u quark distributions. As featured in LRP15, experiments in
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compared with data from E866/NuSea [522] and CT18NLO parton distributions.

Halls A and B at JLab are accessing this ratio with very different approaches. The first of these experiments,
MARATHON, measured the 3H/3He DIS cross sections with the expectation that the effects of nuclear corrections
largely cancel between the two “mirror" nuclei. The experiment has been successfully completed and first
results on Fn

2/F
p
2 have been published [520]. These data allow for more precise extractions of the underlying

d/u ratio [523, 524], while also placing constraints on the isospin-dependence of the nuclear effects [519]. The
model dependence of the PDF extraction can be cross checked with the BONuS12 experiment [525], while an
extraction of d/u, free from the use of any nuclear model, will be made by the Parity-Violating DIS (PVDIS)
program of SoLID in JLab Hall A, see Section 3.3.1.

Meanwhile, the SeaQuest experiment carried out at the Fermilab fixed-target facility has unveiled interesting
features of the sea quark distributions [521]. Naively, one expects that the anti-up ū and anti-down d̄ quarks
should be the same if they both come from the gluon splitting contribution. However, an asymmetry between the
two was observed at low x using the Drell-Yan process in the NuSea experiment [522]. The recent SeaQuest
experiment extended the measurement beyond x = 0.3 and found that the asymmetry persisted, see the right
panel of Fig. 19. Complementary information on d̄(x)/ū(x) has also been studied at RHIC from the ross section
ratios of W- and Z-bosons at mid-rapidity [526].

Quark and gluon polarizations inside the nucleon DIS measurements with polarized beams and targets and
polarized proton-proton collisions probe the polarized (helicity) quark/gluon distribution and the origin of
the proton spin. Significant progress has been made in assessing the fraction of the proton spin from parton
polarizations, see, recent global analyses [527–529].

The impact from the RHIC spin program with polarized proton-proton collisions has been highlighted in
LRP15 [2]. Recent STAR results on double-spin asymmetries of inclusive jet and dijet production at center-of-
mass energies of 200 GeV and 510 GeV complement and improve the precision of previous measurements [530,
533–536], imposing further constraints on the gluon polarization, see the left panel of Fig. 20. Meanwhile,
the production of W-bosons in longitudinally polarized proton-proton collisions serves as a powerful and
elegant tool to access valence and sea quark helicity distributions at a high scale, Q2 ∼ M2

W , where MW the
W-boson mass. The STAR and PHENIX Collaborations have concluded the measurements of the parity-violating
longitudinal single-spin asymmetry in the production of weak bosons and improved the constraints on ū and d̄
polarization [532, 537, 538]. The sea quark ū helicity, ∆ū, is now known to be positive and ∆d̄ is negative. The
opposite sign of the polarized sea-quark distribution with respect to the d̄/ū flavor asymmetry in the unpolarized
sea (right panel of Fig. 19) is of special interest due to the differnet predictions in various models of nucleon
structure. The overall impacts of recent jet and dijet, pion, and W data on the quark/gluon helicity distribution
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as a function of x at a scale of Q2= 10 GeV2 before and after NNPDFpol1.1 [528] reweighting with STAR
2013 W AL [532]. The green band shows the NNPDFpol1.1 results [528] and the blue hatched band shows the
corresponding distribution after the STAR 2013 W data are included by reweighting.

based on the global fits are shown in Fig. 20 for ∆g (left) and ∆ū − ∆d̄ (right), respectively.
Besides determining the origin of the proton spin, these data crucially test theories of the strong interaction.

Notably, high Q2 studies of the Bjorken sum rule [539], defined using the integral of the polarized structure
functions of the proton and the neutron gp,n

1 :
∫ 1

0 dx gp
1(x) − gn

1(x) =
gA
6 +(pQCD corrections) where gA is the

nucleon axial coupling, were the first to show that QCD can describe the strong interaction even when spin
degrees of freedom are explicit [540]. Similarly, low Q2 Bjorken sum data precisely test effective theories that
describe the strong interaction at long distances [540, 541]. The Bjorken sum rule is also used to extract the QCD
coupling αs(Q2) [542], where the high-Q2 extractions [543] are presently only just competitive with high-energy
collider extractions of αs [544]. However, they should become more impactful with the EIC, which should
provide an accuracy of ∼1.5–2% on αs (just from the Bjorken sum rule).

Additionally, quark and gluon polarizations in the nucleon, when measured in specific kinematic regions
such as the x→ 1 limit, also provide valuable tests of predictions from various quark models, perturbative QCD,
and non-perturbative methods. The JLab 6 GeV results [545, 546] showed that the ratio of the polarized to
unpolarized PDF for the down quark, ∆d/d is negative up to x = 0.61. That is, the valence down quark spins in
the opposite direction of the proton spin. In 2020, the 12 GeV extension of the measurement of the neutron spin
was successfully completed in Hall C at JLab, and complementary measurements of the proton and the deuteron
are presently underway in Hall B at JLab using CLAS12. A combined analysis of the data from all three targets
can assess whether ∆d/d remains negative up to x = 0.8, or turns sharply positive at even higher x as predicted
by pQCD models [547].

2.2.3 Three-dimensional Tomography of the Nucleon
To completely understand the proton spin decomposition in terms of quark/gluon spins and their orbital

angular momentum contributions, observables and methods that go beyond the one-dimensional PDF discussed
above becomes necessary. A new direction that emerged at the time of LRP15 is to pursue three-dimensional
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(3D) tomography of the nucleon. The first set of tools are focused on the transverse motion of partons: if the
nucleon is assumed to move in the ẑ-direction, its structure in the transverse direction can be either analysed
in coordinate space using generalized parton distributions (GPDs) or in momentum space using transverse
momentum dependent parton distributions (TMDs).
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Figure 21: Pressure distribution in the proton. Left: estimates of the quark contribution from the DVCS mea-
surements [548]; Right: Lattice QCD calculations of the same quantity, including the gluon contribution [549].
These results show that the pressure is positive at small distances and negative at large distances.

GPDs and gravitational form factors Deeply Virtual Compton scattering (DVCS) has been identified as a
clean process to experimentally access GPDs [550] and Compton form factors (CFF) to probe the 3D structure
of nucleons and nuclei. Data previously collected at various experiments have been used to generate some of
the first 3D images of the proton [551]. GPDs can also be used to determine mechanical properties of particles
through the gravitational form factors (GFFs) [552, 553]. Using two sets of measurements by CLAS with
a 6 GeV polarized electron beam, the beam-spin asymmetry [554] and the differential cross sections [555],
the first data-based estimate has been made on one of the GFFs, the so-called D(t) term [548]. A spherical
Bessel function is then employed to Fourier-transform D(t) to the Breit frame and the results are displayed in
Fig. 21. Meanwhile, the gluon contributions to the distributions of pressure and shear forces inside the proton
were computed using lattice QCD, allowing the first model-independent determination of these fundamental
aspects of proton structure [556]. Combined with the experimental measurements of the quark contribution, this
enabled the first complete determination of the pressure and shear distributions of the proton [549]. More precise
determinations of these quantities are a focus of future experiments at JLab and at the EIC.

Time-like Compton scattering The time-reversal reaction to DVCS, time-like Compton scattering (TCS), offers
unique ways to probe nucleon structure and GPDs. In this case, a quasi-real photon is absorbed by the nucleon
which produces a high invariant-mass lepton pair in the final state. While theoretically as clean as DVCS,
the experimental measurement of TCS is more challenging due to potential background channels, making the
reaction harder to identify. The first measurement of the TCS process was recently performed by the JLab
CLAS Collaboration [557]. Phenomenological models that reproduce worldwide data on DVCS satisfactorily
describe the photon polarization asymmetry and the forward-backward (FB) asymmetry of TCS, see Fig. 22.
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Figure 22: Forward-backward asymmetry as a func-
tion of the momentum transfer t to the proton. The
solid line shows the prediction of a GPD model that de-
scribes worldwide DVCS data, including the D-term
contribution. The red triangles show the asymmetry
computed for simulated Bethe-Heitler (BH) events.
The dashed and dash-dotted lines are predictions of
models without the contribution of the D-term. Note
that the D-term contributes more than 50% to the
asymmetry.

This finding supports the universality of GPDs in describing hard exclusive processes. In addition, TCS is
particularly sensitive to the real part of the Compton amplitude and thus to the D(t) term, which can be related to
the energy-momentum tensor and pressure distribution inside the nucleon as described above.

3D momentum tomography of hadrons The TMDs provide not only an intuitive illustration of nucleon
tomography, but also the important opportunities to investigate the specific nontrivial QCD dynamics associated
with their physics: QCD factorization, universality of the parton distributions and fragmentation functions,
and their scale evolutions. In particular, the quark Sivers functions for semi-inclusive hadron production in
DIS (SIDIS) and Drell-Yan lepton pair production differ in sign because of the difference between initial- and
final-state interactions. This leads to a sign change between the transverse single spin asymmetries (SSAs) in
SIDIS and Drell-Yan: Sivers SSA|DY = −Sivers SSA|DIS. It is important to test this nontrivial QCD prediction
by comparing the SSAs in these two processes. The Sivers SSA in SIDIS have been observed by the HERMES,
COMPASS, and JLab experiments. There have been significant efforts to measure the Drell-Yan Sivers asymmetry
at COMPASS [558] and that of W± production at RHIC [559]. The analyses of these data provided an indication
of a sign change [560–565]. More precise measurements are needed to confirm this crucial property.

Precision SIDIS studies in multidimensional space can systematically investigate the production mechanisms
and validate the theory assumptions in phenomenological TMD studies. Recent JLab experiments have studied
the contributions from the longitudinally polarized quarks in unpolarized nucleons which are critical for a
rigorous TMD interpretation in SIDIS [566–571]. The invariant mass dependence of the asymmetries have been
observed in two hadron system, indicating an important role of vector meson decay contributions [569, 570].
Finally, the Q2 evolution of the SIDIS structure functions measured at JLab and COMPASS are greatly needed
for validation of the current formalism in phenomenology.

RHIC experiments have demonstrated the unique ways in which TMDs can be studied at hadron colliders.
Azimuthal distributions of identified hadrons in high-energy jets measured at STAR directly probe the collinear
quark transversity in the proton coupled to the transverse momentum dependent Collins fragmentation func-
tion [573–577]. Figure 23 shows the STAR measurements of Collins asymmetries as functions of z, the fraction
of jet momentum carried by the hadron, and jT , the momentum of the pion transverse to the jet axis, in p + p
collisions at 200 GeV [572]. The jT dependence appears to vary with z, contrary to the assumptions of most
current phenomenological models [573, 576, 577]. STAR has also measured quark transversity through dihadron
interference fragmentation functions in 200 and 500 GeV p+p collisions [578, 579].

Moreover, STAR measurements have shown the persistence of sizeable transverse single-spin asymmetries
AN for forward π0 production at RHIC energies up to 510 GeV with a weak energy dependence. STAR has
explored the SSA in forward electromagnetic jet production as well [580]. In addition, by utilizing pA collisions
at RHIC, both STAR and PHENIX collaborations studied the nuclear modifications of the forward hadron
SSAs [581, 582]. Neither the origin of the nuclear dependence nor the difference between the PHENIX and
STAR results is well understood at this time.
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Theoretical evaluations from [573] and [574] are also shown.

2.2.4 Origin of the Nucleon Mass
The origin of the proton mass is one of the central questions in contemporary hadronic physics. The

topic, highlighted in LRP15 and the 2018 National Academy of Sciences (NAS) assessment of the EIC, has
seen many prominent experimental and theoretical developments in recent years. A promising channel to
study the emergence of proton mass is quarkonium production near threshold, which is uniquely sensitive
to the non-perturbative gluonic structure of the proton. In 2019, the GlueX collaboration published the first
measurement of J/ψ photoproduction in the near-threshold region [583], see Fig. 24. Their one-dimensional
cross section results trend significantly higher than those previously extrapolated based on older measurements.
These results spurred many new theoretical investigations of the gluonic structure of the proton and the origin
of its mass [556, 584–602]. In 2022, the JLab Hall C J/ψ-007 experiment released the first two-dimensional
photoproduction measurement near threshold [603], shown in Fig. 25. These two-dimensional results provide a
new window into the gluonic gravitational form factors of the proton. The new data indicate that the proton has a
dense, energetic core that contains most of its mass. In order to further our understanding of the origin of the
proton mass, precision multidimensional measurements of near-threshold quarkonium production are needed,
in particular at high momentum transfer. The timely completion of the planned experimental program at JLab,
including J/ψ production studies with SoLID, will be crucial. More data that may hold the key to a universal
understanding of the origin of the proton mass are expected from the EIC, see discussions in Sec. 4.1.
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2.2.5 Hadron Spectroscopy

Lightest exotic hybrid meson The suggestion that that hybrid mesons, arising from excitations of gluon fields,
could exist is as old as QCD. A smoking gun signature for such a state would be JPC quantum numbers outside
the set allowed for a quark-antiquark pair, with 1−+ suspected to be the lightest. Experimental data from several
facilities suggested two low-lying isovector 1−+ states, a π1(1400) observed in ηπ, and a π1(1600) observed in
η′π and other channels [605]. These were in stark contrast to the results of lattice QCD computations [606]
which indicated there should be just a single low-lying state with these quantum numbers. Analyzing recent data
from COMPASS on the ηπ and η′π final states [607], the JPAC collaboration utilized a unitary description of
coupled-channel amplitudes to show that the enhancements observed could be explained by just one resonance,
rigorously described by a single pole singularity. This pole was found deep in the complex energy plane,
indicating a broad resonance [608]. A subsequent lattice QCD calculation [609] using heavier-than-physical
quark masses considered the relevant scattering process in which this state appears, finding a single resonance
pole in the coupled-channel amplitudes. Upon extrapolation to physical kinematics, relatively small partial
widths were found for decay into the observed channels ηπ and η′π, but a large coupling to b1π generated a large
total width, in agreement with the JPAC data analysis. GlueX is currently examining the ηπ and η′π final states
in photoproduction, and this lattice calculation adds further motivation to the already underway examination of
higher multiplicity final states.

Heavy quark exotics While the vast majority of observed hadron states are understood to be composed of three
quarks (baryons) or quark-antiquark pairs (mesons), QCD allows for other configurations, including four and
five quark states known as tetraquarks and pentaquarks. Recent observations at several experimental facilities
have revealed many candidates for these unconventional states in the charm and bottom sectors [610–614].
Theoretical models accommodate individual measurements as tightly-bound multiquark states or as hadronic
molecules, but no picture can describe all the new observations. Complicating matters further is the fact that
many of the states are observed in non-trivial production or decay processes where three-body rescattering effects
of essentially kinematic origin could mimic a resonance signature. Directly producing such states in simple
two-particle scattering can eliminate non-resonant interpretations. Utilizing the kinematic reach provided by
the 12 GeV CEBAF, near-threshold J/ψ photoproduction was studied for the first time at GlueX [583] and in
Hall C [603] to search for direct production of the hidden-charm P+

c pentaquarks observed by LHCb [615, 616].
While no resonance signals were observed, as shown in Fig. 24, model-dependent upper limits on the branching
ratios provide new constraints on the interpretation of these exotic candidates. Higher energy photo- and
electro-production experiments, such as the EIC and an energy-upgraded CEBAF, can provide new opportunities
to directly produce other exotic charmonium-like states and shed light on their nature.

Exotic hadrons in heavy ion collisions As described in Sec. 2.1, the QGP created in heavy ion collisions is
an abundant source of deconfined quarks, which can form hadrons by coalescence as the plasma expands and
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freezes out. Thus measurements of exotic states in heavy ion collisions provide new tests of production and
transport models [617, 618] and are potentially sensitive to the structure of the exotic states themselves [619].
The first measured heavy quark exotic state, X(3872), has recently been measured in p + p (as a function of
multiplicity), p+Pb and Pb+Pb collisions [620, 621]. While the X(3872) to ψ(2S) cross section ratio drops with
multiplicity in p + p collisions, there is indication of a rise with multiplicity in the larger p+Pb and Pb+Pb
collision systems. This varying behavior may indicate that a range of suppression and enhancement effects are
coming into play. Currently these measurements are statistics limited and additional studies with higher statistics
data are required to clarify the situation.

In response to these recent measurements, several new theoretical developments have emerged. Comover
models have described the multiplicity dependence in p + p in terms of X(3872) breakup via interactions with
other particles produced in the event. The results have been interpreted as providing evidence for the X(3872) as
both a compact tetraquark [622] and a hadronic molecule [623]. Calculations based on quark coalescence at
freeze-out using the AMPT model show that, if the X(3872) is a molecular state, it should be greatly enhanced
in central A + A collisions relative to a compact tetraquark [619]. A recent transport calculation comes to
the opposite conclusion [617]. While all these models have successfully explained conventional charmonium
behavior in both small systems and the QGP, their application to exotic states has provided new challenges.

2.2.6 QCD in Nuclei

Short range correlated nucleon pairs (SRCs) SRC pairs are temporal fluctuations of two strongly-interacting
nucleons in close proximity. They are characterized by large relative momentum (prel > kF ≈ 250 MeV)
and smaller total momentum (ptot . kF) [624–629]. At the time of LRP15, it was known that the very high
momentum nucleons were almost entirely associated with SRCs, and were strongly dominated by np-SRCs for
a wide range of nuclei. Since then, there have been significant advances in various aspects of SRCs and their
relation to the EMC effect, made possible through extensive investigations of hard exclusive scattering reactions
at JLab [630].

Figure 26: Left: The ratio of (e,e’pp) to (e,e’p) cross sections for different nuclei as a function of the missing
momentum of the first proton [631]. The gray band shows a factorized calculation for carbon (C) using the
Generalized Contact Formalism (GCF) and the AV18 potential. Right: Extracted np-SRC/pp-SRC ratio from
recent comparisons of 3H and 3He scattering along with previous world’s extractions [632].

First, several new measurements have provided additional confirmation of the universality of the isospin and
momentum structure of SRCs. Almost all high momentum nucleons in nuclei belong to an SRC pair [633]. At
intermediate relative momenta (300 ≤ prel ≤ 600 MeV), these SRC pairs are predominantly np pairs, due to the
tensor part of the nucleon-nucleon (NN) interaction [632, 634–636]. This np dominance can cause momentum
inversion, where the minority nucleons (e.g., protons in neutron-rich nuclei) have higher average momentum
than the majority nucleons [635].
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Second, recent measurements demonstrated that the near total np-dominance established above the nuclei
Fermi-momentum, where the tensor force dominates, can be modified in special circumstances. As the momenta
probed increases to 700 ≤ prel ≤ 1000 MeV, central correlations become more important and the relative numbers
of pp and np pairs follow simple spin-state pair counting [631, 633], thus observing a new scalar-interaction
dominated regime at very short distance scales, see Fig. 26 (left panel). In addition, recent 3H/3He inclusive cross
section ratio measurements in the SRC region give a ratio of 0.854±0.010 [632], well below the expected ratio of
unity expected from complete np-SRC dominance. This ratio, as well as the ratio for (e, e′p) measurements [637],
can be used to extract the underlying np-SRC/pp-SRC ratio based on a plane-wave impulse approximation
picture [632], see right panel of Fig. 26. Meanwhile, both data are well described [631, 633, 638] by Generalized
Contact Formalism (GCF) [639–641] calculations using realistic NN interaction models with np-dominated
SRC contact terms [642], and for the inclusive data also by interactions with no tensor-force [638]. This shows
remarkable progress in our understanding of np-dominance dynamics and short-distance two-nucleon interactions
in all measured nuclei, building connection between scattering data and nuclear theory [631, 633, 638, 643–645].

The momentum distribution of SRC pairs has also been probed in light nuclei using hard proton knockout
from the deuteron [646] and 3He and 3H [637, 647]. The measured and ab-initio calculated cross-sections
show good agreement up to very high momenta. These measurements therefore provide new insight to the
very high-momentum tails of nucleon distributions in light nuclei, short-distance interactions, and few-nucleon
dynamics. Investigations are currently underway as part of the JLab 12 GeV program to probe beyond the
2N-SRC region and look for 3N-SRCs in nuclei, and test predictions for the universal contribution of 3-body
structures at high-momenta.

Nuclear EMC Effects and SRCs As highlighted in LRP15, the strength of the EMC effect in nuclei, i.e.,
the nuclear modification of the valance structure functions measured in DIS, is linearly correlated with the
abundance of SRC pairs [628, 648]. This indicates that the short-distance NN interaction could modify nucleon
structure. The measured data could be explained by a universal modification of the structure of nucleons in SRC
pairs [649–651], providing empirical corrections of nuclear effects in the extraction of the free-neutron structure
function [652] (see Fig. 27).

Figure 27: Left: Measured structure function ratio for different nuclei relative to deuterium [649]. Right: The
extracted universal modification function of nucleons in SRC pairs from a global data analysis [652].

At the meantime, results from recent measurements continue to proide insights on the EMC effect in both
light and heavy nuclei [649, 653, 654]. In paricular, preliminary results from JLab have shown that the size of
the EMC effect is nearly constant for A = 4 and A = 9 to 12, and there is a clear correlation of the EMC effect
with the local nuclear density [654]. More measurements are being carried out to study both the EMC effect and
SRCs for all available light nuclei, to study the connection to the detailed nuclear environment, and for heavier
nuclei over a range on N/Z to separate A-dependence from isospin effects.
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In addition, recent and planned measurements of novel observables such as tagged-DIS (TDIS) will probe
the structure function of bound nucleons in specific nuclear states and will provide guidance for constraining
off-shell nucleon-modification models that are currently largely unconstrained [655]. Measurements of the
spin structure function EMC effect will also test a complementary set of EMC models [656–658] where the
bound nucleon modification is driven by the mean-field nuclear potential [659]. The combination of all these
measurements, including those discussed above and in Sec. 3.3.6, will provide an unprecedented understanding
of the impact of the strong nuclear interaction on the internal structure of bound nucleons and thereby the parton
structure of nuclei.

Nuclear modification of the parton distributions In addition to the EMC effects discussed above, the nPDFs
in the full kinematics, from the shadowing effects at small x to the Fermi motion effects at large x, see, Fig. 50,
provide a framework to study the cold nuclear matter effects. Previously, the nPDFs were extracted through
global analysis of the experimental data from fixed-target DIS and Drell-Yan production in pA collisions. In the
last few years, proton-lead collisions at the LHC offer a wealth of opportunities to study cold nuclear matter
effects, especially by using electroweak bosons [660–666]. Combining the LHC data with previous fixed target
DIS and Drell-Yan data, the precision of the extracted nPDFs has improved significantly, see, e.g., recent global
analyses from several groups [667–670]. Furthermore, recent JLab CLAS data have provided a 3D extension of
these studies with the measurement of incoherent and coherent DVCS giving access to both bound proton and
nuclear GPDs, respectively [671–673].

2.2.7 Cold Nuclear Matter Effects in Hadron Production
Apart from the nuclear modification of structure function in DIS (EMC effects) discussed above, cold nuclear
matter effects can be studied with semi-inclusive hadron productions in e + A and p + A collisions. The QCD
dynamics are much more involved in these processes and the underlying mechanism could come from the parton
distribution modifications, hadron formation in a nuclear environment, and small-x gluon saturation in extreme
kinematics. Therefore, a comprehensive study of these phenomena requires both theoretical and experimental
investigations. Since LRP15, several notable developments have been achieved. Here, we highlight some new
results from the LHC, RHIC, and JLab. Future developments are expected, in particular from the planned EIC,
see Section 4.
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Figure 28: LHCb Collaboration measurement of the nuclear modification factor of charge particles as a function
of pT in different rapidity intervals for the forward region in p+Pb collisions at

√
S NN = 5 TeV at the LHC [674],

compared to state of the art CGC calculations [675].

Nuclear modification of forward hadron yields in p + A collisions at LHC and RHIC Forward hadron
production in p + A collisions (or d + A deuteron-nucleus collisions at RHIC) have attracted a great deal of
attention. Experimentally, the evolution of the nuclear modification factor RdAu from mid-rapidity to forward-
rapidity regions measured at RHIC is considered important evidence of the onset of gluon saturation [676, 677].
Recently, the LHCb collaboration published the measurement of the charged particle spectra in p+Pb and
p + p collisions at

√
sNN = 5 TeV at the LHC, covering a wide range of kinematics, especially the forward

pseudorapidity range of 1.6 < η < 4.3 [674]. The latest gluon saturation interpretation of all these measurements
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can be found in [675], where the CGC calculations are performed at next-to-leading order and supplemented
with threshold resummation effect.
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Di-hadron (dijet) correlations in p + A collisions Understanding the nonlinear behavior of the gluon at small
x is one of the most important physics goals for the RHIC/LHC cold QCD program and the future EIC. The
back-to-back di-hadron azimuthal angle correlation is one of the most sensitive direct probes the underlying
gluon dynamics involved in hard scatterings [678, 679]. Earlier measurements of di-hadron correlations in d+Au
collisions have indicated gluon saturation at small-x in large nuclei [680–683]. The STAR Collaboration per-
formed the measurements of back-to-back azimuthal correlations of di-π0s produced at forward pseudorapidities
(2.6 < η < 4.0) in p + p, p+Al, and p+Au collisions at √sNN = 200 GeV. The results have been published [684]
recently, showing a clear suppression of the correlated yields of back-to-back π0 pairs in p+Al and p+Au
collisions compared to the p + p data. The observed suppression is larger at smaller transverse momentum,
which indicates lower x and Q2. The larger suppression found in p+Au relative to p+Al collisions exhibits a
dependence of the suppression on the mass number A. Higher-precision measurements will be performed with
the STAR forward upgrade to further explore the nonlinear gluon dynamics. Those measurements will provide a
baseline for searching for gluon saturation at the future EIC. Similarly, dijet correlations in p + A collisions from
the LHC have also studied small x physics within a complementary kinematic coverage [685], where theoretical
interpretation combines the gluon saturation and high order soft gluon radiation contributions [686].

Semi-inclusive hadron production in DIS with nuclear targets Data from previous fixed target HERMES
measurement have been applied to constrain the cold nuclear matter effects in hadron production in DIS processes.
Several JLab SIDIS experiments on deuterium, carbon, iron, and lead targets have been carried out by the CLAS
Collaboration. In the first experiment [687], the production of single charged pions in SIDIS was measured with
first-ever full kinematic coverage. In the second, the azimuthal angle dependence of two pion suppression in
nuclear targets was compared to that of nucleon targets [688], considerably extending the scope of previous
studies with HERMES. The third studied Λ(uds) attenuation and transverse momentum broadening [689]. New
data on multi-dimensional attenuation of neutral pions should be released soon. All these new studies will
explore hadron formation in cold nuclear matter with DIS, helping benchmark future studies at JLab and the EIC.

Color transparency The search for the onset of color transparency (CT) is driven by the need to better understand
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the connection between the partonic and hadronic degrees of freedom in nuclei. Experimental measurements on
this topic are not yet conclusive. A recent experiment from Hall C at JLab found no evidence of the onset of CT
from proton knockout on a carbon nucleus up to Q2 = 14.2 (GeV/c)2 [690], whereas previous measurements with
exclusive meson electroproduction have observed the onset of CT at an order of magnitude lower Q2 [691–693].
This is a puzzling situation and future searches for CT at JLab will extend the Q2 range of measurements for
pion and rho mesons [694, 695], providing a direct comparison between protons and mesons.

3 Future Opportunities
3.1 QCD Theory

It is widely accepted that QCD is the right theory to describe the strong interaction, which governs all nuclear
physics from quarks and gluons to nucleons and nuclei. Solving QCD in the non-perturbative region has been a
great challenge of modern quantum field theory in the last half century and it will remain so in the foreseeable
future. In this section, we will lay out the achievements in recent years and then focus on future perspectives
related to the QCD theory. In particular, the challenges to confront the experimental data have motivated the
theory community to form collaborative efforts for all research areas of QCD and examples will be discussed in
Sec. 3.1.5. These topical collaborations will play crucial roles for future theory developments. Note that this
section is not comprehensive, as many aspects related to theory are discussed in the previous and following
sections, along with experimental considerations. This section discusses more formal and purely theoretical
aspects of QCD in detail.

3.1.1 Lattice QCD
Soon after the formulation of QCD, the Euclidean space-time lattice regularization was introduced, paving

the way for numerical studies of non-perturbative QCD [696]. Several decades of efforts have demonstrated
that lattice QCD is an unmatched tool for understanding strong interaction physics ranging from the partonic
structure of nucleons to the QCD phase diagram.

The structure of the nucleon has been a central component to the development of QCD. Due to their
non-perturbative nature, the theoretical determination of many nucleon properties relies crucially on lattice
calculations. Since LRP15, there has been tremendous progress in lattice computations of hadron structure,
including the axial, scalar and tensor charges and form factors of nucleons, spin and mass decomposition, and
various parton distributions.

Nucleon axial, scalar and tensor charges and form factors The simplest nucleon matrix elements give the
nucleon charges and form factors. This includes the axial, scalar, and tensor charges. The axial and tensor
charges are related to the longitudinal and transverse spin dependent quark distributions which can be explored
in high energy hadronic experiments, such as inclusive DIS and SIDIS. There has been significant progress
in lattice calculations of these charges in recent years [697]. In particular, the nucleon axial charge gA served
as an important benchmark calculation for lattice QCD applications to nuclear physics. The first lattice QCD
result that fully addressed all sources of systematic uncertainty appeared in 2016 [698] and results that were
also in agreement with the Particle Data Group (PDG) value within one standard deviation appeared in 2017
and thereafter [699–708]. The precision achieved in the lattice QCD calculations of gA opens the door for this
quantity to be elevated from an important benchmark result to another key quantity needed for precision low-
energy tests of the Standard Model. Meanwhile, at this level of precision, the radiative quantum electrodynamics
(QED) corrections must be fully understood, see a recent example of O(2%) pion-induced radiative correction to
gA [709].

The lattice calculations of the axial and tensor charges have provided benchmarks for phenomenological
extraction of various parton distributions from experimental measurements of spin asymmetries, see, e.g., a
combined analysis of nucleon tensor charge from lattice QCD and the quark transversity distributions from
experiments [563, 710]. Similarly, progress made in the lattice calculations of nucleon form factors [549, 556,
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703, 711, 712] provides important constraints on the modeling of the quark/gluon GPDs, see e.g. [713]. The
combination of lattice results with experimental measurements will continue to provide crucial information on
nucleon tomography with upcoming programs at JLab and the EIC.

Pion and kaon form factors Pions and kaons are among the most prominent strongly interacting particles next
to the nucleon, since they are the Goldstone bosons of QCD. Thus, it is important to study their internal structure
and how it reflects their Goldstone boson nature; a question particularly relevant for understanding the origin
of mass generation in QCD [714, 715]. While measuring pion and kaon form factors is one of the goals of the
experimental program at Jlab12 and the EIC [716, 717], current experimental information on the pion and kaon
form factors is limited [718], especially at large momentum transfer, making lattice QCD calculations more
relevant. Recent lattice calculations of the pion form factor have been performed with two flavors (N f = 2) of
dynamical quarks [719–723], with physical strange quark and two light quark flavors (N f = 2 + 1) [724–731],
as well as with dynamical charm quark, strange quark and two flavors of the light quarks with nearly physical
masses (N f = 2 + 1 + 1) [732]. Most of the lattice studies so far focused on the small Q2 behavior of the pion
form factor, with the largest momentum transfer studied so far corresponding to Q2 ' 1.4 GeV2 [731]. With
advanced techniques, such as boosted sources [733] and increased computational resources it should be possible
to extend the lattice form factor calculations to Q2 ' 30 GeV2, i.e., the region of interest for the EIC.

Spin and mass decomposition of the nucleon Lattice QCD has been extensively applied to understand the
origin of proton spin and mass. Since LRP15, there have been two complete lattice calculations of the nucleon
spin decomposition with renormalization, mixing and normalization properly taken into account. In this
decomposition, the proton spin is constructed from individual quark and gluon angular momentum contributions,
and the quark orbital angular momentum (OAM) contribution can be further derived by subtracting the associated
helicity contributions [734]. One calculation uses the twisted mass fermion on a N f = 2 + 1 + 1-flavor lattice with
lattice spacing of a = 0.08 fm and pion mass of 139 MeV [735]. The results on the angular momentum fractions
J for the u, d, s, c quarks and gluons are shown in the left panel of Fig. 30. The summed quark Jq is 57.1(9.0)%
and Jg is 37.5(9.3)% of the total angular momentum. The quark helicity contribution is also calculated to be
1
2∆Σ = 0.191(15). This leaves the quark OAM with 18.8(10.2)(2)% of the total spin. Another calculation is
based on the valence overlap fermion on a 2 + 1-flavor domain wall fermion sea on a 323 × 64 lattice with
a = 1.43 fm and pion mass of 171 MeV with a box size of 4.6 fm [736]. The results [736] for the percentage
contributions are ∆Σ, Jg and Lq at 40(4)%, 46(5)% and 13(5)%, respectively. All these results are matched to
the MS scheme using the renormalization scale µ = 2 GeV. In addition, a complementary approach with direct
access to quark OAM, based on Wigner functions, has also been pursued [737, 738], yielding compatible results
as above and providing further insight on different formalisms for the quark OAM.

The hadron mass and its decomposition can be obtained from the energy-momentum tensor (EMT). Ac-
cording to Ref. [740], the rest energy has the following expression: E0 = 〈Hm〉 + 〈HE〉(µ) + 〈Hg〉(µ) + 1

4 〈Ha〉,
where 〈Hm〉 is the quark condensate, 〈HE〉(µ) is the quark kinetic and potential energy, and 〈Hg〉(µ) is the glue
field energy. Both of them depend on the scale. Finally, 〈Ha〉 is the trace anomaly and is renormalization group
invariant. A lattice calculation of this decomposition was carried out by the χQCD Collaboration [739]. This
calculation was done with the overlap fermion on four 2+1-flavor domain-wall fermion configuration ensembles
for 3 lattice spacings. The largest lattice is at the physical pion point and full non-perturbative renormalization
and mixing are performed. The right panel of Fig. 30 shows the fractional decomposition of the rest energy in
terms of 〈Hm〉, 〈HE〉(µ), 〈Hg〉(µ), and 1

4 〈Ha〉 in the MS scheme at µ = 2 GeV, as functions of m2
π. Clearly, except

for 〈Hm〉, the components are fairly independent of the quark mass up to mπ = 400 MeV.

Parton distributions Calculating the partonic structure of bound states from first principles lattice QCD with
controlled accuracy remains an important unsolved problem. Previous efforts have been focused on the moments
of collinear PDFs, which provide momentum-space “global” information about partons. In recent years, new
opportunities emerged for lattice QCD calculations to investigate the partonic structure of hadrons. Novel
methods enabled the calculations of the x dependence of PDFs, GPDs, and TMDs, which was previously
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Figure 30: State of art lattice QCD calculations of emerging properties of the nucleon: (left) spin decomposition
in terms of the angular momentum Jq for the u, d and s quarks and the gluon angular momentum Jg in the
n f = 2 + 1 + 1 calculation from the ETMC collaboration [735]; (right) mass decomposition in terms of 〈Hm〉,
〈HE〉(µ), 〈Hg〉(µ), and 1

4 〈Ha〉 at µ = 2 GeV as functions of m2
π from χ-QCD collaboration [739].

considered unattainable. The major complication is the inability to obtain light-cone quantities from the
Euclidean formulation of lattice QCD. The realization that lattice matrix elements of non-local operators can be
related to light-cone distributions has transformed the field of hadron structure [741–744], with the U.S. leading
several aspects.

Various methods have been developed [745–757] and significant progress has been made using two major
approaches: large momentum effective theory (LaMET) in which the parton x-dependence is calculated directly
via a large momentum expansion [751, 752], and short-distance factorization or operator product expansion,
which comes under various names such as pseudo distributions [753] or “good lattice cross sections” [754–756],
in which the x-dependencies are parametrized and fitted with the global analysis method. Precision calculations
of isovector unpolarized, helicity, and transversity quark PDFs are ongoing, with simulations at the physical
quark masses, and with controlled systematic uncertainties, including renormalization of linear divergences and
continuum limit, two-loop matching and renormalization group resummation [758–766]. While the lattice QCD
results for the sea quarks and gluon PDFs still have a long way to go before they reach good accuracy, the field is
up-and-coming and more developments are expected to appear shortly [767–771].

These developments have also been applied to hadron tomography of GPDs and TMDs. They are computa-
tionally more expensive than the integrated PDFs due to being differential in additional kinematic variables, e.g.,
the momentum transfer between the initial and final hadronic states for the GPDs, and transverse-momentum
degrees of freedom in TMD PDFs and wave functions. First exploratory results on the proton unpolarized and
helicity GPDs were reported in Refs. [772–775] and more detailed investigations are ongoing. On the TMD
side, substantial insight into TMD spin physics has been obtained through lattice calculations of TMD ratio
observables [776–779]. Meanwhile, the theoretical developments in the last few years have paved a way to
compute the TMDs from lattice based on the LaMET formalism [780–795]. The associated evolution kernel and
soft factors have been computed [789–791, 796–799] and a preliminary result for the isovector quark TMDs has
recently appeared [800].

Hadron spectroscopy Hadron spectroscopy as a field is undergoing a rapid development, where the emergent
phenomenon of the hadron resonance spectrum as measured in experiments can be directly connected to
non-perturbative QCD by means of rigorous amplitude analysis and lattice QCD computation. In the area of
lattice computations of meson resonances, researchers in the US are world-leading, in particular the hadspec
collaboration [www.hadspec.org] has made pioneering contributions to the calculations.

The formalism that relates the discrete spectrum of states in a finite volume to elastic two-body scalar particle
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scattering amplitudes has been in place for over thirty years [801], but it was only recently that lattice QCD
technology developed to the level where the calculations were practical. At the time of the last LRP, only a few
elastic scattering systems, and a single coupled-channel system (πK, ηK) had been studied in explicit lattice QCD
calculations, yielding QCD descriptions of the ρ and K∗ resonances. In the years since, many more meson-meson
and meson-bayon scattering sectors have been explored in lattice calculations with heavier-than-physical light
quarks, exposing the variety of ways resonances can manifest themselves in scattering amplitudes [802–805]
and providing a first-principles QCD approach to studying longstanding mysteries such as the nature of the
light scalar mesons and the decays of the lightest exotic hybrid meson [609]. By coupling currents to scattering
systems [806–809], the internal structure of unstable resonances can be explored in unprecedented ways.

Going beyond two-particle scattering, finite-volume formalisms to describe three-particle scattering have
been derived [810, 811] and these are currently being applied to explicit lattice QCD calculations in cases of
maximal isospin, like π+π+π+, where there are neither three-body resonances, nor any resonances in two-body
sub-channels [812–815]. The demonstrated success in these trial channels motivates further ongoing studies of
channels in which resonances appear, allowing a much larger fraction of the QCD spectrum to be investigated
rigorously, including many exotic hadrons of contemporary interest.

QCD phase diagram The study of the QCD phase diagram with lattice simulations has experienced tremendous
progress in the last few years. The phase transition line is typically determined by extrapolating chiral observables
to finite chemical potential µB, and finding the temperature at which the chiral condensate has an inflection
point, or the chiral susceptibility has a peak. The transition temperature as a function of µB can be written as
Tc(µB)/Tc(µB = 0) = 1 − κ2 (µB/Tc(µB))2 − κ4 (µB/Tc(µB))4 + · · · . A high-precision result for the crossover
temperature Tc(µB = 0) has become available, Tc(µB = 0)=158 ± 0.6 MeV [816], which is in agreement with
the previously quoted value Tc(µB = 0)=156.5 ± 1.5 MeV [817]. Current extrapolations to finite chemical
potential reach out to µB ≈ 300 MeV, through the precise knowledge of the coefficients κ2 = 0.0153 ± 0.0018
and κ4 = 0.00032 ± 0.00067 [816]. Similar coefficients for the extrapolation of the transition temperature to
finite strangeness, electric charge and isospin chemical potentials were obtained in Ref. [817]. No sign of
criticality is observed from lattice QCD simulations up to µB ' 300 MeV [816, 818]. Future challenges include
the extrapolation of the phase transition line to larger values of chemical potential and more stringent constraints
on the location of the critical point.

QCD equation of state The QCD EOS has been known at µB = 0 with high precision for several years
[819–821]. The sign problem prevents direct simulations at finite chemical potentials. However, different
extrapolation methods have been used to obtain the EOS at moderate values of µB. Significant progress has been
achieved through a Taylor expansion of the thermodynamic quantities [822–824], currently limited to µB/T < 3.
A new expansion scheme has extended the range of the EOS to µB/T < 3.5 [825]. An alternative approach
with a similar range in µB/T has been developed in [826], where the equation of state has been constructed as
a relativistic virial expansion in baryon number fugacity. All of these equations of state are two-dimensional:
thermodynamic variables are calculated as functions of the temperature and the baryon chemical potential.
However, in QCD there are other two conserved charges: elecric charge Q and strangeness S . A choice needs to
be made for the respective chemical potentials µQ and µS . Typical choices are µQ = µS = 0 or µQ = µQ(T, µB)
and µS = µS (T, µB) such that the phenomenological conditions nQ = 0.4nB and nS = 0 are satisfied, with ni

number density for charge i. These conditions reflect the overall strangeness and electric charge fraction in the
colliding nuclei of a heavy-ion collision. An extension of the new expansion scheme to strangeness neutrality
and beyond was presented in Ref. [827]. A full four-dimensional equation of state, expanded as Taylor series in
µB/T, µS /T and µQ/T , is available in Refs. [57, 58].

The BEST collaboration has built an equation of state which reproduces lattice QCD results up to O((µB/T )4)
and contains a critical point in the 3D-Ising model universality class [56, 60, 828]. This EOS can be used in
hydrodynamic simulations of heavy-ion collisions to check the effect of changing the location and strength of
the critical point. Future challenges, both for lattice QCD and the BEST collaboration equations of state, are to
extend them to larger coverage of the QCD phase diagram.
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Heavy flavor probes of hot matter on the lattice The heavy flavor diffusion coefficient characterizes the
movement of a heavy quark with a momentum of at most the order of the temperature with respect to the
medium rest frame. For this reason, it can contribute to our understanding of thermalization of heavy quarks
in the QGP. Estimates of this quantity in the deconfined phase of QCD were presented in Refs. [829, 830],
albeit in the quenched approximation. This quantity was studied on the lattice by means of the gradient flow
method [231, 232, 831]. A wide temperature range has been explored in Ref. [832], where the multilevel
algorithm was used. The results from the gradient flow and multilevel algorithm methods are consistent with
each other. Future challenges include the continuum extrapolation of this observable in full QCD with realistic
simulation parameters. Calculations with physical quark masses will require exascale computing resources,
allocated through the ALCC [833] and INCITE [834] programs. To take advantage of exascale resources, lattice
QCD codes must be adapted to the computational hardware, requiring funding from programs like SciDAC
[835]. Larger Nτ lattice will not only address bottomonium properties at T , 0, the complex QQ potential, and
the heavy quark diffusion coefficient but also, with minimal additional investment, improve studies of charm
fluctuations and charm baryon number correlations. The lattice can also study a novel chromoelectric field
correlator that describes in-medium dynamics of heavy quark-antiquark pairs [836, 837], which has been shown
to be different from the heavy quark diffusion coefficient [838, 839].

3.1.2 Theory and Phenomenology of Cold QCD
Applying QCD theory to both hot and cold QCD physics is a great challenge, due to the nonperturbative

nature of strong interaction phenomena. Therefore, approximations have to be made to confront the experimental
measurements, either by using QCD factorization with proper power counting, or building a rigorous numerical
framework.

In the QCD factorization formalism, the hadronic cross sections are factorized into the partonic hard scattering
cross sections and the associated non-perturbative hadron structure. The central task for QCD theory is to provide
precision computations of the various relevant partonic hard-scattering cross sections and splitting functions at
high orders of perturbation theory. The past few years have seen tremendous progress in this area. For example,
for the longitudinal momentum distribution functions (spin-dependent and spin-independent), the associated
DGLAP evolution kernels are now fully known to next-to-next-to-leading order (NNLO) [840–842]. Salient
examples of computations of partonic cross sections for, e.g., e + p scattering at the EIC, at NNLO and even
beyond, include work on inclusive DIS [843–845] and jet production in DIS [846–849]. Other developments
include heavy quark and quarkonium production in various hard scattering processes [850–859] and the principle
of maximum conformality arguments in perturbative calculations [860].

The theoretical framework for establishing the tomographic structure of hadrons, as encoded in GPDs, has
been well established and higher order perturbative QCD corrections have been calculated. The first computation
of NNLO corrections for DVCS has also been reported recently [861–863]. Progress has been made toward
a global analysis of GPDs, including a wide range of experiments [713, 864–873]. Meanwhile, recent global
analyses have achieved high precision for the unpolarized TMD quark distribution and fragmentation functions
from fits to data on semi-inclusive hard processes [561, 562, 874–877]. All these computations will impact the
extraction of parton distributions and tomographic structure from future experiments, including JLab and EIC.

More generally, global analysis is a powerful tool that has recently been applied to extracting the unpolarized
parton distribution functions [516, 519, 878–881], quark/gluon helicity distributions [527–529], TMDs and
GPDs, as mentioned above. The key feature of these developments is to utilize the computational advances and
apply theoretical constraints, including the lattice results. With future data from JLab and EIC on the horizon,
the role of global analysis will become even more important.

An important thread of theory developments is the application of the effective degrees of freedom of QCD
to derive an effective field theory (EFT). These developments have not only revealed emerging dynamics of
strong interaction physics but also provided advanced techniques to apply perturbative methods to deal with
complicated hadronic processes. Recent progress along this direction has made it possible to compute various
observables in both hot and cold QCD. In the following, we will describe two examples that have significant
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impact.

Soft-collinear effective theory Soft-collinear effective theory (SCET) is an effective field theory which sys-
tematically describes the infrared QCD dynamics in hard collisions, including those associated with soft and
collinear degrees of freedom [882–884]. It has been widely applied to a large variety of collider processes.
This is partly because SCET provides a systematic and convenient method to perform high order perturbative
calculations through the universal steps in deriving factorization in terms of independent functions governing the
hard, collinear and soft dynamics of a process. SCET is also transparent in carrying out higher order resummation
of large logarithms. Moreover, it has the ability to generalize the factorization to more complicated processes and
multiscale observables, and the capability to systematically study power corrections. SCET continues to have a
significant impact on the field of high precision calculations for hard scattering processes at various colliders,
including Higgs/Z/W boson production, and inclusive jet and multi-jet production at the LHC.

In connection to hadron physics, SCET played an important role to clarify the QCD factorization for various
hard processes where one can extract nucleon structure, such as the TMDs, see, e.g. [793]. A key development in
recent years is the analysis of power corrections to the factorization formalism [885], which will have potential
impact on future phenomenological applications at JLab and the EIC.

Color-glass condensate There are compelling theoretical arguments and strong experimental hints that suggest
that gluon distributions saturate at small Bjorken-x [886–891]. Gluon saturation occurs when the nonlinear terms
in the field strength tensor are of the same magnitude as the kinetic terms or, equivalently, when the occupancy
of field modes is O(1/αs). The CGC is a QCD EFT that describes the physics of small-x modes in protons
and large nuclei and the underlying dynamics of gluon saturation at collider energies. The evolution of the
complex many-body dynamics of partons in this regime of QCD with energy is described in the CGC EFT by
powerful renormalization group (RG) equations [892–897] that underlie the predictive power of this theoretical
framework. The state-of-the art of these RG equations is at NLO accuracy with significant ongoing theoretical
and computational work.

An attractive feature of the CGC EFT is that it can be employed to explore the dynamics of small-x modes
and gluon saturation across a wide range of high energy experiments, from electron-hadron DIS from HERA
to the EIC, to hadron-hadron, hadron-nucleus and nucleus-nucleus collisions at RHIC and the LHC. In DIS,
NLO calculations are emerging for an increasing number of processes in electron-nucleus collisions, while a
parallel program of precision comparisons of theoretical predictions to data is underway for proton-nucleus and
ultra-peripheral collisions at the LHC (see [898] for a review).

The CGC EFT also provides a compelling model of the initial conditions in heavy-ion collisions, as shown in
Sec. 2.1.4. A significant body of research in this direction enables one to quantitatively assess the impact of this
framework on the space-time evolution of matter in such collisions, and has played a key role in the quantitative
extraction of transport coefficients of the quark-gluon plasma.

Similar data-theory comparisons at the EIC will help solidify and quantify these insights into the 3-D
tomography of gluons [679, 899]. These will require a global analysis of data from hadron-nucleus and electron-
nucleus collisions in analogy to successful global analysis studies in perturbative QCD discussed above. An
important theoretical development is the emerging quantitative connections of the CGC EFT to the TMD and
GPD frameworks in perturbative QCD. These studies can help refine and expand the predictive power of both
frameworks. Another set of interesting questions is whether studies of overoccupied states in other systems
in nature across wide energy scales can provide deeper insight into universal features of gluon saturation; a
particularly promising approach is the perspective provided by quantum information science [900–905]. An
intriguing possibility is that of designing cold atom analog quantum computers (discussed further later) to capture
dynamical features of such systems [906, 907].

QCD-inspired models of hadron structure Due to its non-perturbative nature, strong interaction physics has
inspired a great deal of models, see textbooks [908, 909] for a summary. In recent years, a number of models
have helped to unveil the nontrivial feature of hadron structure and stimulated further theoretical developments.
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This includes the Schwinger-Dyson (Bethe-Salpeter) equations [910, 911] and instanton liquid models [912]
where a certain truncation is needed to apply these models; and the light-front holographic model [913]; the
light-front Hamiltonian model [914–918]. All these models have captured certain features of non-perturbarive
QCD physics and have gained success to describe the hadron structure to some extent. However, because the
connections between the model degrees of freedom and the fundamental ones are unknown, the uncertainties
from these calculations may not be under control.

Amplitude analysis to unveil the QCD hadron spectroscopy In anticipation of CEBAF 12 GeV operations, in
2013 the Joint Physics Analysis Center (JPAC) was formed to develop the necessary theoretical, phenomenologi-
cal and computational frameworks for analysis and interpretation of data. The quality and complexity of modern
spectroscopy-relevant datasets is such that it is only by collaboration between experimentalists and theorists
like those in JPAC that robust results on the hadron spectrum can be obtained. While the search for light exotic
hadrons in experiments at Jefferson Lab continues to be one of the main efforts of JPAC, over time the reach of
the center has expanded worldwide with its members now affiliated with experiments outside JLab, including
BESIII, COMPASS, and LHCb.

The need for sophisticated amplitude analyses is pressing in view of the copiously produced XYZ states,
where what is required is a systematic study of reaction mechanisms to isolate genuine resonances from
other effects, e.g. kinematical singularities which may generate peaking structures without a resonance being
present [919, 920]. In this context direct production using photon beams would provide an independent validation
of the resonance nature of the XYZ’s by virtue of the absence of the kinematic singularities present in the three-
body production through b-hadron decays or e+e− annihilation. JPAC has studied both exclusive [921] and
semi-inclusive [922] photo-production of the XYZ states, and made predictions for future measurements at EIC
and an energy-upgraded CEBAF.

By providing a forum for close collaboration between theory and experiments, JPAC has been successful in
effecting integration of theoretical developments into experimental analyses, and in educating a new generation
of practitioners in the tools of amplitude analysis.

3.1.3 Theory and Phenomenology of Hot QCD

Theory of jets in hot QCD matter The discovery of jet quenching at RHIC in the early 2000s [168, 923]
and confirmation from the study of fully reconstructed jets at the LHC [211] has spurred much theoretical and
experimental research activity in the past decade with the objective of using jets as a multi-dimensional tool to
probe the properties of the quark gluon plasma at various length scales (see Sec. 2.1.3).

The current picture of parton energy loss is based on a medium induced gluon cascade that efficiently
transports energy from fast color charges down to the plasma temperature scale where energy is dissipated
[924–928]. A future prospect is to improve on the accuracy of such gluon cascades by systematically computing
higher order corrections to medium-induced gluon splitting including full kinematics [929–933]. Another
important direction of research is the study of the medium response to the passage of a jet which describes how
the distributions of low momentum partons are affected [934–941].

Because jets are complex quantum systems, their energy loss in the QGP is sensitive to color decoherence,
an emergent QCD phenomenon caused by rapid color precession of entangled color charges [942–945]. It was
recently investigated in the leading logarithm approximation of the inclusive jet spectrum [946, 947] and was
shown to yield an excess of soft particles inside the jet in a study of the jet fragmentation function [200, 948].
Extensive theoretical studies of jet substructure were carried out to diagnose energy loss mechanisms and color
decoherence [180, 949–954], and will play a crucial role in the future to fully exploit jet quenching observables
to probe the resolution power of the hot QCD media.

Higher order corrections to jet observables in heavy ion collisions are paramount for precision tests of
jet quenching and will certainly constitute a major focus of future theoretical approaches to jet quenching.
As an example, it was recently shown that some corrections are enhanced by a large double logarithm in the
medium size [925, 955–959] which, when resummed to all orders, results in an anomalous scaling of transverse
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momentum broadening that reflects super diffusive behavior [960, 961]. Higher order corrections to radiative
energy loss were also investigated [931, 956, 962–964]. More progress is required, and will rely on help from
high performance computational tools, such as Monte Carlo event generators and lattice techniques, in order to
achieve precision tests of non-equilibrium QCD dynamics using jet observables.

Effective theory approaches in hot and dense QCD There are two main thrusts in using effective theories to
compute properties of QCD at nonzero temperature and density. By asymptotic freedom, perturbation theory only
allows calculations at very high temperature. Computations at temperatures ∼ 300 MeV requires resummation of
hard thermal loops [965–968], very technically challenging. At low temperatures hadronic models can be used.
In between these two, in the region of greatest experimental interest, numerical simulations are the only method
of first principles computation. However, as discussed in more detail above, these methods are limited by the
existence of the sign problem at finite quark chemical potential, especially for µq > T . Thus it is well worth
developing effective models which can complement results from the lattice. Effective models can advance further
into the T and µq plane, particularly for µq > T , to determine the transport coefficients as a function of T and µq

and explore phenomena such as the location of the critical endpoint, moat spectra and color superconductivity.
The Functional Renormalization Group [969] has been applied to QCD, including estimates of the critical

endpoint, how trajectories flow in the plane of T and µq, etc. Results for the shear viscosity have been obtained
at both zero [970–973] and nonzero density [974, 975]. Another approach is to use approximate solutions to
the Schwinger-Dyson equations [976]. Dynamical transport [977, 978] and quasiparticle models have been
developed to compute transport properties at high [234, 979–987] and intermediate [988] energies. These
models, while approximate, have the real virtue of being able to compute at nonzero density with similar
efficiency as at zero density. These models have also been used to compute jet transport coefficients [989].
While holography obtains results for the most supersymmetric S U(N) theory at large N, it is a useful approach
[990–996]. Transport properties have also been obtained in holographic models [975, 997–999]. Lastly, matrix
models for the semi-QGP have been developed to describe the equilibrium properties of QCD at both zero
[1000–1004] and nonzero chemical potential [1003]. A preliminary attempt to compute the shear viscosity was
made years ago [1005, 1006], but needs to be improved by including a complete effective Lagrangian [1004].

Further development of these effective theory approaches, along with lattice QCD, will be important for
understanding QCD and will be crucial for improving heavy ion phenomenology and the extraction of QGP
properties in the coming years.

Hydrodynamics and kinetic theory Since LRP15, new developments concerning the emergence of hydrody-
namics under extreme conditions have shed light on the regime of applicability of hydrodynamics in heavy-ion
collisions. Hydrodynamization, the process of approaching hydrodynamic behavior, was systematically inves-
tigated in a variety of systems at strong and weak coupling [50, 1007–1026]. Results demonstrated that the
hydrodynamic gradient expansion in rapidly expanding plasmas can become divergent [1027–1030], which natu-
rally led to question how one may systematically define hydrodynamics. The prevailing picture is that the onset of
hydrodynamics in high-energy heavy-ion collisions may be identified by the presence of a hydrodynamic attractor
[1031], which provides a key new element in the extension of hydrodynamics towards the far-from-equilibrium
regime [1032–1036]. Furthermore, it was systematically investigated how one may resum not only gradients but
also the viscous stresses themselves, through anisotropic hydrodynamics [51, 52, 1037–1039]. New causal and
stable first-order theories of (general-)relativistic viscous hydrodynamics have been formulated [1040–1045],
which opened up new opportunities to systematically investigate hydrodynamic phenomena without the need to
evolve extra variables in addition to the standard hydrodynamic fields, as it occurs in 2nd order formulations
[1046].

Many more theoretical developments are needed in order to fully determine the applicability of hydrodynam-
ics in heavy-ion collisions. A systematic investigation of the nonlinear properties of 2nd order hydrodynamics,
going beyond the first results of [1047] by including all the possible 2nd order terms as well as the effects of QCD
conserved currents [1048, 1049] and their initial state fluctuations [47, 1050], is urgently needed, especially as
one moves towards low beam energies. The question of causality violation in current simulations [1051, 1052]
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needs to be addressed to avoid instabilities and to better constrain the properties of the pre-hydrodynamic
phase. Much progress on the latter has been achieved in recent years using QCD effective kinetic theory
[50, 1020, 1053]. A better description of the hydrodynamization process in this context requires the inclu-
sion of fermions [1054, 1055] (allowing for the investigation of chemical equilibration), and the inclusion of
non-conformal effects when matching to hydrodynamics [106, 1056, 1057].

The possibility of using different definitions of hydrodynamic variables (different hydrodynamic frames)
opens up a number of questions in the formulation of hydrodynamics [1045]. Work is needed to systematically
formulate 1st and 2nd order stochastic hydrodynamics in general hydrodynamic frames, going beyond existing
results [66, 1058–1060], considering also the effects from fluctuations due to a critical point [65, 68] or a first
order phase transition.

The question of how quantum mechanical effects related to spin degrees of freedom or Quantum Field Theory
(QFT) anomalies become manifest in relativistic fluids has generated a lot of activity in the field throughout the
last decade [1061, 1062]. Chiral (or anomalous) relativistic hydrodynamics includes quantum effects driven
by anomalies that manifest in the hydrodynamic regime [1063] and influence the dynamics of various systems
from the QGP to Weyl semimetals [1061, 1064, 1065]. However, very little is known about the properties of
the chiral hydrodynamic equations of motion and their solutions, especially in the nonlinear regime probed in
hydrodynamic simulations of the QGP. Initial steps were taken in [1066] for ideal hydrodynamics. However,
nothing is known about such properties when viscous effects are included in the nonlinear regime. Following
the measurement of global Λ polarization by the STAR collaboration [438] (see Sec. 2.1.7), the development
of consistent theories of spin hydrodynamics is underway [1067–1075]. There is currently no formulation of
viscous spin hydrodynamics that is causal, stable, and well-posed, leaving this as an important task for the next
decade.

Hadronic transport codes are necessary in their role as afterburners at high energies, and are currently
the only means of describing the largely out-of-equilibrium evolution of heavy-ion collisions at low energies,
such as those explored in the BES FXT program. By comparing simulations with experimental data, hadronic
transport can be used to extract the EOS and in-medium properties of nuclear matter at finite T and large
nB [75, 76, 1076–1079], as well as constrain the isospin-dependence of the EOS [79–83, 85–90], important
for understanding the structure of neutron stars. Precision extractions require further improvements [1080],
including using maximally flexible parametrizations of the density-, momentum-, and isospin-dependence of
nucleon interactions [77, 95], incorporation of the in-medium properties of nuclear matter as constrained by
chiral effective field theory, description of light cluster production, and threshold effects [1080]. Progress can
be made through systematic comparisons between various hadronic transport codes, and the Transport Model
Evaluation Project (TMEP) Collaboration has provided several benchmark results and recommendations for
improvements [988].

3.1.4 Quantum Information Science and QCD
A rapidly growing area of research within the U.S. Nuclear Physics (NP) research portfolio is the application

of Quantum Information Science (QIS) in NP. In fact, while the topic was not discussed in LRP15, its rapid
emergence in various disciplines within NP over the past five years promoted NSAC to form a sub-committee in
2019 to report on the opportunities and prospects of QIS in NP. The resulting report [1081] identified simulation
and sensing as the two major research directions: first since many grand-challenge problems in NP require
advanced, and potentially quantum-based, simulation and sensing techniques and technologies, and second since
the expertise of nuclear physicists in these sub-areas could lead to transferring some of the current and future
developments in NP to the QIS community. In cold and hot QCD research, in particular, simulation has proven the
prime first-principles approach. In fact, lattice QCD methods, combined with state-of-the-art high-performance
computing, are expected to continue to push the frontiers of accurate studies of nucleon structure, properties of
light nuclei, and low-density QCD matter at finite temperatures [1082–1086]. However, it is conceivable that
the range of studies facing a sign problem (or equivalently a signal-to-noise problem) remain infeasible with
current techniques. Such studies include finite-density systems aimed at full exploration of the phase diagram of
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circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ

. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IV A is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i + |�(3,3,3,1,3,1)i + |�(1,3,1,3,3,3)i + |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1p
2

⇥
|�(3,1,3,3,1,3)i + |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1p
2

[ |�(8,1,1,8,1,1)i + |�(1,1,8,1,1,8)i ] ,

Real-time dynamic of pure SU(3) gauge 
theory with global irrupts on IBM

4

FIG. 1. Structure of the plaquette operator upon integration
of local quantum numbers in (top) a one-dimensional string of
plaquettes [17] and (bottom) two spatial dimensions. The blue
squares indicate the active quantum registers, the green circles
indicate the neighboring controls, and the dashed green circles
indicate the quantum registers upon which the controls depend.

V. IMPLEMENTATION

Delocalizing operators in a quantum simulation protocol
often leads to exponential di�culty in their compilation into
a basic hardware gate set; the extreme example of this be-
ing global bases [18] in which gauge invariant Hilbert spaces
are completely removed and hardware quantum states are
mapped to physical configurations of the lattice volume.
With the proposed local integration strategy, the retained lo-
cal operator structure and qudit framework allows clear orga-
nization of time evolution operators. The electric operators
are diagonal 1- or 2-qudit operators while the magnetic time
evolution circuit may be decomposed according to the non-
zero physical matrix elements of the plaquette operator. As
shown at the bottom right of Fig. 1, the plaquette operator

can be first expanded in a product of control sectors, ~C. The
operators in each control sector trivially commute, leading
this product to be gauge invariant through Trotterized time
evolution. Operators in each control sector may be decom-
posed into Givens rotations such that each unitary operator
is associated with a physical plaquette transition and the co-
e�cients determined from gauge invariant matrix elements.
This compilation in terms of Givens rotations, while gauge
invariant, introduces a source of systematic error upon Trot-
terization. Ref. [18] discusses in detail the scaling of the num-
ber of physical matrix elements in the plaquette operator to
quantify the Givens circuit depth required with this compi-
lation approach. While technically e�cient—with a number
of Givens rotations per plaquette operator scaling polynomi-
ally with the field truncation as O

�
⇤16

�
—the high degree

of the polynomial scaling presents continued challenge, even
for low energy wavefunctions that are expected to converge
exponentially in field space. However, experience with the
impact of hardware and algorithmic co-design on anticipated
quantum resources for quantum chemistry applications [25]
suggests ample opportunity for analogous refinements in the
quantum simulation of field theories.

The gauge invariance of the designed qudit time evolu-
tion operator, which survives Trotterization, and the pres-

ence of residual unphysical Hilbert space provides a built-in
mechanism for detecting local errors. In particular, whether
applying a non-destructive measurement of the Gauss’s law
operators [26] or projectively measuring the final quantum
state (e.g., as performed in Ref. [17]), post-selection into the
gauge-invariant subspace provides reliable criteria for sup-
pressing incoherent, vertex-density bit flip errors to O(p2).
Though the presence of physical states at distance-2 upon
local bit flips leads to incomplete availability of correction
with current methods, the structure of the retained gauge
symmetry allows passive detection of this category of error.
In light of the natural ability of gauge theories to protect
distributed quantum degrees of freedom from local sources
of quantum noise [27–29], further work incorporating natural
error robustness is at the frontier of gauge theory quantum
simulation.

In terms of plaquette operator localization, this hybrid
multiplet basis may be contextualized in the literature as
intermediate between the structure of Ref. [20] and that of
the Schwinger bosons underlying prepotentials and the loop-
string-hadron (LSH) formulation [30, 31]. While the for-
mer places all gauge field information at the link, the latter
captures the field through gauge-invariant operators local to
each vertex. With the integrated multiplet basis, the pro-
jection quantum numbers are localized to each vertex while
the irrep quantum number remains at the link. The subse-
quent local integration of the projection quantum numbers
produces a nearest-neighbor delocalization of the same spa-
tial extent as the plaquette operator in the LSH formulation.

VI. CLOSING REMARKS

With the quantum simulation of non-Abelian gauge the-
ories relevant to Standard Model physics in its infancy,
understanding and building upon an array of small, low-
dimensional LGTs is an essential part of present-day devel-
opment, with implications beyond quantum field theories. In
the context of generating the entanglement necessary to sat-
isfy local gauge constraints, we have discussed aspects of hy-
brid operator design for a digital quantum simulation of the
Kogut-Susskind formulation that trades-o↵ a reduced Hilbert
space for neighbor-controlled evolution operators and asso-
ciated classical computation.
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Figure 31: The left side depicts the structure of the plaquette operator in the pure SU(3) lattice gauge theory upon
integration of local quantum numbers for a one-dimensional string of plaquettes (top) and for a two-dimensional
sheet of plaquettes (bottom). The blue squares indicate the active quantum registers while the green circles
denote the neighboring controls. The right side shows a real-time simulation of the dynamics of the vacuum in
terms of fluctuations in the electric energy of a two-plaquette system in the (truncated) global color parity basis,
implemented on the IBM Athens quantum processor. The figure is adopted from Refs. [1087, 1088].

QCD, and of real-time dynamics of QCD processes such as those prevalent in heavy-ion collisions and in early
universe, which are essential to understand equilibration, thermalization, hydrodynamization, fragmentation,
and hadronization in QCD. Additionally, non-equal-time QCD correlation functions generally are not directly
accessible, making it challenging to compute hadron and nuclear structure functions, dynamical response
functions, transport coefficients, and more.

Quantum simulation is fundamentally different from classical simulation in that a vast Hilbert space of a
quantum many-body system can be encoded exponentially more compactly into quantum units. These quantum
units could be two-dimensional spins, or qubit, or higher-dimensional spins called qudits, or even bosons and
fermions as in nature. Furthermore, the computations can be parallelized exponentially more efficiently using
the principles of superposition and entanglement in quantum mechanics. The time evolution can be efficiently
implemented but states need to be initiated and finally measured to access observables, for which many strategies
are being developed [1089–1094]. In the QCD community, the progress has been significant, and while the earlier
ground-breaking simulations focused on demonstrating access to non-perturbative real-time phenomena, such
as pair production and vacuum fluctuations, in simple models such as the 1+1 dimensional QED [1095–1101],
a plethora of works in recent years have provided algorithms and strategies for simulating both Abelian and
non-Abelian lattice gauge theories in higher dimensions, including three-dimensional SU(3) lattice gauge theory,
see e.g., Refs. [1087, 1102, 1103]. This research has shaped into interconnected theoretical, algorithmic, and
hardware implementation and co-design directions: it aims to find the most efficient Hamiltonian formulations
of gauge theories of interest in the Standard Model on and off the lattice [1104], match them to the near- and
far-term algorithms that scale increasingly more efficiently with system size [1087, 1102, 1103, 1105, 1106], and
perform small instances of those on current quantum-simulation hardware, in digital or analog modes, to show the
potential. See Refs. [1107–1122] for select examples on recent progress on a range of QCD-inspired problems.
This had led to the formation of successful co-design efforts among QCD physicists and hardware developers,
which may be a critical component of a quantum-simulation program for QCD over the next decade [1104, 1123].
The current resource estimates for solving QCD in regimes of interest to phenomenology are far beyond the
capabilities of the current quantum hardware. Nonetheless, with the rapid progress in quantum technologies, and
the ongoing race toward fault-tolerant quantum computing in academia, industry, and government sectors, it is
important for QCD researchers to be ready to take advantage of the new technology, as it is being developed and
into the future.
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3.1.5 Topical Collaborations
As emphasized in the last LRP, many aspects of theoretical nuclear physics can benefit from additional

long-term, sustained efforts beyond the base program that bring together the resources of several institutions in a
coordinated way to address a well-defined problem or topical area with a clear set of deliverables. When DOE
established the first topical collaboration in 2010, the “Jet" Collaboration was selected in the QCD area. In the
second round, two topical collaborations from QCD area were selected: “TMD" and “BEST". In a recent round
announced in December 2022, the QCD community received 4 out of 5 awards. Meanwhile, NSF has funded
two collaborations: JETSCAPE and MUSES. All these collaborations have been very successful.

Previous: TMD Collaboration This collaboration consisted of 3 national laboratories and 11 universities. It
addresses the challenge of extracting novel quantitative information about the internal landscape of the nucleon,
in particular the three-dimensional (3D) confined partonic motion inside the nucleon, which are encoded in the
TMDs. The goal is to develop new theoretical and phenomenological tools that are urgently needed for precision
extraction of the 3D tomography of the confined motion of partons inside the nucleon from current and future
data.

Bridge position highlight Prof. Martha Constantinou was hired by Temple University as a bridge position
with the TMD Collaboration in 2016. Since then, she has received the DOE early career award and the Sloan
foundation research award. The bridge position has enabled her to come to the US from Cyprus. She now leads
the Quark-Gluon Tomography (QGT) collaboration, funded by DOE in 2023. Hers is a true success story from
the DOE topical collaboration program.

Previous: BEST Collaboration The BEST Collaboration, involving collaborators from two national laborato-
ries and 11 universities, developed a theoretical framework for interpreting the results from the BES program at
RHIC. The main goals of this program were to discover, or put constraints on the existence, of a critical point in
the QCD phase diagram, and to locate the onset of chiral symmetry restoration by observing correlations related
to anomalous hydrodynamic effects in the quark gluon plasma.

Bridge position highlight Prof. Chun Shen was hired by Wayne State University in 2018. He received IUPAP
Young Scientist Prize in Nuclear Physics in 2019 and a DOE Early Career Award in 2021. Prof. Vladimir Skokov
was hired by North Carolina State University in 2018.

JETSCAPE Collaboration Interpretation of jet measurements requires sophisticated numerical modeling and
simulation, and advanced statistical tools for comparison of theory calculations with experimental data. The
JETSCAPE/XScape Collaboration was formed to develop a comprehensive software framework that will provide
a systematic, rigorous approach to meet this challenge. It will develop a scalable and portable open source
software package to replace a variety of existing codes. The collaboration consists of a multi-disciplinary team
of physicists, computer scientists and statisticians from 13 institutions, and will create open-source statistical
and computational software to help scientists better understand high energy nuclear collisions.

MUSES Collaboration This collaboration addresses questions that bridge nuclear physics, heavy-ion physics,
and gravitational phenomena such as: What type of matter exists within the core of a neutron star? What
temperatures and densities are reached when two neutron stars collide? What can nuclear experiments with
heavy-ion collisions teach us about the strongest force in nature and how can we relate heavy-ion collisions to
neutron stars? The collaboration spans 16+ institutions, hosts annual workshops and biweekly seminars, and
supports a number of undergraduates, graduate students, and postdocs.

QGT Collaboration The QGT Collaboration brings together a team with broad expertise and leadership across
hadron physics theory to drive understanding and discovery in the quark and gluon tomography of hadrons
and the origin of their mass and spin. This proposal will provide partial support for 11 postdocs, 6 graduate
students, and bridge positions in theoretical hadron physics at three institutions: Stony Brook University, Temple
University, and University of Washington.
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SURGE Collaboration The Saturated Glue (SURGE) Topical Theory Collaboration aims at the discovery and
exploration of the gluon saturation regime in QCD by advancing high precision calculations and developing a
comprehensive framework to compare to a wide range of experimental data from hadron/ion colliders and make
predictions for the EIC. It will provide partial funding for 5 postdocs, 7 graduate students, and 1 undergraduate
student at 13 institutions, and will establish a bridge position at the University of Illinois at Urbana Champaign.

HEFTY Collaboration This collaboration combines the capabilities of leading US researchers to develop
a rigorous, comprehensive theoretical framework of heavy flavor particles in QCD matter, from their initial
production, their subsequent diffusion through the QGP and hadronization that can be embedded into realistic
numerical simulations and compared to data. It will provide partial funding for 3 postdocs and 6 graduate
students at 7 institutions and establish a bridge position at Kent State University.

ExoHad Collaboration The Coordinated Theoretical Approach for Exotic Hadron Spectroscopy (ExoHad)
Collaboration aims to develop a pathway to study some of the more elusive states formed of quarks and gluons
using the the foundational principles of scattering theory and quantum chromodynamics. The funds will support
3 graduate students, 3 postdocs, and two bridge faculty positions at William & Mary and Indiana University.

3.2 Future opportunities in Hot QCD
Hot QCD research is addressing questions of fundamental importance that can be summarized in the

following main goals:

• Determine the phase structure of nuclear matter The phase diagram needs to be pinned down as a
function of temperature and net-conserved charges, including the determination of a possible QCD critical
point, which requires the experimental measurement and theoretical study of collisions with varying
collision energy. We need to understand the deconfinement transition and chiral symmetry restoration,
and determine the nuclear equation of state for which heavy ion collisions and neutron stars can provide
complementary input.

• Understand the mechanisms that lead to the emergence of the fluid behavior of hot and dense nuclear
matter This requires studying the QGP at short distance scales using hard probes, including jets, heavy
flavor hadrons, and quarkonia. Further insight can be gained by pushing the boundaries to e.g. small
collision systems and better constraining the initial state from theory and complementary experiments.
Electromagnetic probes carry further information on the time evolution of the system.

• Quantify the dynamic properties of the quark gluon plasma Transport properties of the QGP, including
its shear and bulk viscosity, as well as its interaction with heavy and high momentum probes, need to be
determined as functions of temperature and densities of conserved charges, and understood within QCD or
effective theories thereof. Further, probing the vortical structure of the fluid flow fields can access spin
related transport properties.

• Utilize the broad physics reach of heavy ion collisions Heavy ion collisions provide an incredible amount
of information, which, when carefully isolated, allows for physics studies far beyond the QGP and even
QCD. Ultra-peripheral collisions can be employed to study photo-nuclear events probing very low x, as
well as quantum electrodynamic phenomena with some processes sensitive to beyond the standard model
physics. Heavy ion collisions also offer a unique opportunity to study quantum anomalies via the chiral
magnetic effect. Furthermore, certain observables are highly sensitive to the detailed nuclear structure of
the colliding nuclei, and far forward data from heavy ion collisions can provide important information for
cosmic ray physics.
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3.2.1 Properties of the Quark Gluon Plasma
In the coming years, phenomenological studies of hot many-body QCD systems will focus on obtaining

robust constraints on thermodynamic and transport properties of the QGP, exploring the QCD phase structure at
large baryon densities, and emerging collectivity in small systems.

Transport properties from Bayesian inference and multi-observable studies One major goal of studies of
the QGP at RHIC and LHC is the determination of transport properties, such as the shear and bulk viscosity
to entropy density ratios, η/s and ζ/s, as well as relaxation times, electric and heat conductivities, the partonic
momentum diffusion coefficient q̂, and transport coefficients for single heavy quarks and heavy quark-antiquark
pairs. The hot QCD community has moved toward determining the temperature dependence of these quantities,
as well as their behavior at varying chemical potentials. Observables in heavy ion collisions exhibit varying and
complex responses to these QGP properties. Consequently, systematic and robust phenomenological constraints
are best derived from combining multiple measurements via the Bayesian Inference method. Bayesian Inference
analyses for the RHIC BES program and including high-statistics observables pose serious numerical challenges
to the field. Although using model emulators can effectively reduce the required computational resources,
novel techniques are essential to further reduce the required volume of training datasets while keeping good
accuracy of the model emulators. To achieve more effective model training, techniques like transfer learning and
multi-fidelity training [1124–1126] should be employed in full (3+1)D hybrid frameworks. In order to efficiently
compute high-statistics observables, additional speed boosts from employing other machine learning tools such
as deep neural networks, are needed. The Bayesian model averaging method is crucial for combining different
models with their relative statistical weights to systematically fold in theoretical uncertainties. Sophisticated
Bayesian Model Mixing techniques are presently being developed by the BAND Collaboration [1127].

A concerted effort will be needed to develop documented and accessible Bayesian inference software
frameworks [1127]. Of equal importance will be accessibility to supercomputing infrastructure to perform
the large-scale calculations required for Bayesian studies. Incorporating more hadronic observables into
the Bayesian analyses should provide stronger constraints than are currently available. Some work in this
direction has been done by including normalized symmetric cumulants into a Bayesian analysis and it was
shown that these quantitites are more sensitive to the temperature dependence of the transport coefficients than
vn [1128]. Additionally, the transport properties are particularly poorly constrained in the higher temperature
range accessible only at the LHC (see Fig. 4). This could be improved upon for example by measuring the vn of
dileptons [138]. Generally, better constraints on the viscosities could be obtained by using as many observables
as possible - combining the low-momentum hadronic observables used in current analyses with electromagnetic
probes, as well as jets and heavy flavor probes.

To maximize information gain on initial state and QGP properties, one should explore new multi-particle
correlation observables and their precise experimental measurement. This includes correlations of flow harmonics
with mean transverse momentum fluctuations, and higher order versions of those, normalized symmetric
cumulants, mixed harmonic cumulants from 4, 6, 8 or more particle correlations, higher order transverse
momentum fluctuations, and non-linear flow mode coefficients. Studying these observables, and analyses of
varying collision systems will aid in separating initial state properties from QGP properties and with the extraction
of information using Bayesian analyses [107, 108]. Including Hanbury-Brown-Twiss (HBT) observables [36–40]
could provide additional constraints as they are more directly sensitive to the spatial size of the emission source.
Measurements of identified particles, in particular the study of strangeness, can elucidate the mechanism of
particle production and further constrain the properties of matter created and provide information on the effect of
the hadronic phase in collisions of various size and at varying collision energies.

Detector upgrades New opportunities to constrain QGP properties in future experimental programs are enabled
by not only significantly higher integrated luminosities, but also by detector upgrades. Figure 32 (left) shows
the projected performance of PID v2 measurements by ALICE for 10–20% centrality Pb+Pb collisions at the
high-luminosity LHC (HL-LHC) with an integrated luminosity of 13 nb−1 [1129, 1130]. A large variety of
baryon and meson v2 (and also higher order vn) including hadrons containing multiple strange quarks will be
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Figure 32: Left: ALICE projections for PID v2 in 10–20% centrality PbPb collisions for an integrated luminosity
of 10 nb−1 at HL-LHC [1129, 1134]. Right: CMS projection of long-range two-particle correlations with ∆η up
to 8 units from Phase-2 upgrades for the HL-LHC [1131].

measured over a wide kinematic range with unprecedented precision, which will impose strong constraints on
QGP properties starting from the initial condition, hydrodynamic evolution, to the final hadronization stage.
With the Phase-2 upgrades of the CMS and ATLAS experiments, long-range particle correlations and collective
behavior of the QGP will be explored over 8 units of pseudorapidity η, as shown Fig. 32 (right) for CMS [1131].
Moreover, the wide acceptance time-of-flight detector upgrade planned at CMS will bring unique opportunities
to study the QGP medium with identified hadron production and correlations over unprecedented phase space
coverage [1131–1133]. LHCb upgrades will increase the centrality range accessible at far forward rapidity and
allow new measurements of identified particle and heavy quark collectivity in a unique region of phase space.

Equation of state It has been proposed that key thermodynamic properties of the QGP can be extracted by the
multiplicity dependence of mean pT in ultra-central heavy ion collisions to directly constrain the speed of sound
in QGP, and thus the QCD equation of state at high temperatures [107, 1135]. The beam-energy dependence of
the slope of the directed flow and the elliptic flow have likewise been shown to be highly sensitive to the EOS
[75, 76, 1076–1079, 1136–1142]. Extraction of speed of sound via baryon number cumulants has also been
proposed in collisions at low energies which probe high baryon densities [1143]. These measurements can be
explored at both RHIC and the LHC over a wide energy range to obtain key information on the QCD phase
diagram. Connections between the grand-canonical susceptibilities of (multiple) QCD conserved charges with
the corresponding measurements of (cross-)cumulants in heavy-ion collisions derived in Refs. [1144, 1145] can
be utilized to obtain further information about the EOS.

Heavy-ion collisions with
√

sNN ∼ 10 GeV from the current RHIC BES program and future experiments
including CBM at the Facility for Antiproton and Ion Research (FAIR) offer a unique opportunity to quantify the
QCD phase structure at large baryon densities [1146]. Our phenomenological tools need substantial developments
to explore this region of the phase diagram, which is currently inaccessible to first-principles lattice calculations.
As the two incoming nuclei pass through each other, it is crucial to model their interactions dynamically to obtain
non-trivial event-by-event distributions of energy density, baryon and electric charge densities for the following
macroscopic hydrodynamic evolution. Colliding heavy ions with different electric charge to baryon ratios,
like isobar pairs, is important to explore the full 4D nature of the QCD phase diagram in (T, µB, µS , µq) [59].
Developments of the parametrized 4D equation of state and the propagation of multiple conserved charge currents
and their diffusion in relativistic hydrodynamic frameworks are essential to model the macroscopic evolution
of these collision systems and determine how this flavor information leaves its imprint on identified particle
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production. Constraining the 4D QCD phase diagram in (T, µB, µS , µq) will also make connections with nuclear
astrophysics, which focuses on studying the nuclear matter properties in a dense and neutron-rich environment
(see sec. 5.2) [1147]. In heavy-ion collisions, the out-of-equilibrium propagation of multi-point correlations is
crucial to trace the signatures of the QCD critical point and first-order phase transitions. Implementation of
dynamical descriptions of the relevant multi-particle correlations in frameworks like hydrodynamics will be an
important step in the search for the QCD critical point [60]. Another crucial requirement is that descriptions of
particlization that retain information on fluctuations and correlations [73], are advanced to a level where they can
be employed in large scale phenomenological simulations.

Studies utilizing hadronic transport simulations have also been remarkably successful in understanding the
dynamics of heavy-ion collisions at low energies from

√
sNN ≈ 1.9 to

√
sNN ≈ 8.0 GeV [1080]. In particular,

hadronic transport with mean-field potentials naturally describes the initial state of the collision as well as the
interaction between the expanding collision region and the spectators, necessary for understanding the origin of
the flow observables including, e.g., the rapidity dependence of the directed flow or the origin of “squeeze-out”
in the elliptic flow at low energies. Currently there are still significant differences between symmetric nuclear
matter EOSs extracted from different theoretical fits to heavy-ion collision data [75–78, 1148]. Some of these
differences can be assigned to differences in modeling framework. Systematic comparisons between different
hadronic transport codes, such as those done within the Transport Model Evaluation Project Collaboration [988],
can provide a common baseline for code development and lead to code and modeling improvements. Making
precise quantitative statements about the properties of dense nuclear matter, including the density-, isospin-, and
momentum-dependence of the single-nucleon mean-field potential, will require developing maximally flexible
parametrizations of nucleon interactions over large ranges of density and temperature probed in heavy-ion
collisions. With advances in modeling, the extracted information will achieve unprecedented precision given the
forthcoming data, see Sec. 3.2.6.

Further directions for constraining QGP properties Electromagnetic probes provide complementary infor-
mation about the medium properties relative to the hadronic observables, as they provide increased sensitivity
to the early stages of the collision. More discussion on the prospects for electromagnetic probes can be found
in Sec. 3.2.2. Polarized Λ hyperons can probe the vortical structure of the fluid flow fields in heavy-ion colli-
sions. The extension and phenomenological applications of recently developed spin-hydrodynamic theories are
important to probe the spin related transport properties of the QGP, see Sec. 3.2.7.

3.2.2 Hot QCD Studies with Electromagnetic Probes
The production of soft photons and dileptons in the little understood early stages of heavy-ion collisions,

namely their “pre-equilibrium emission” [123, 142, 156, 1149–1160], represents one of the most important areas
of study for electromagnetic probes. Photons and dileptons can provide critical information on the dynamical
properties of the early stages, including chemical equilibration. Photons and dileptons will also play a vital role
in studying the formation of quark-gluon plasma in collisions of smaller systems, such as proton-gold collisions.
Calculations predict a measurable thermal photon signal in collisions of small systems [123, 357, 1161], and
pre-equilibrium photons would likely add to this signal.

Dilepton measurements have already proven valuable in studying lower energy collisions of nuclei [1162–
1164], providing estimates of the medium temperature [1165, 1166]. The analysis of high statistics measure-
ments by the STAR BES II program [224] will provide important new low- and intermediate-mass dilepton
measurements that can be used to study the phase diagram of QCD at lower temperatures and higher baryon densi-
ties [1167], as well as chiral symmetry restoration. The future experiments NA60+ [1168] and CBM [1146, 1169]
will provide high-precision measurements with new detector capabilities. ALICE will measure thermal dilep-
tons in Runs 3 and 4, which can give access to the system’s average temperature. The future experiment
ALICE3 [1170] will measure low- and intermediate-mass dileptons at higher energies with unprecedented
precision to address chiral symmetry restoration through ρ − a1 mixing and to improve the measurement of
the plasma temperature (and its time evolution). The novel detector capabilities will also enable differential vn

measurements in various mass ranges, which will provide stringent constraints on medium properties such as
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shear and bulk viscosity and pre-equilibrium dynamics. The ALICE 3 experiment also aims to study ultrasoft
photon emission and the corresponding predictions from Low’s theorem [1171].

Ultimately, the simultaneous systematic study of soft photons and dileptons, along with soft hadrons and
other observables, will provide unparalleled constraints on the properties of deconfined nuclear matter.

3.2.3 QGP Tomography with Hard Probes
The 2015 LRP cited the importance of measurements of jets at both RHIC and the LHC in order to understand

the temperature dependence of QGP properties. In the following, new opportunities with jet and heavy flavor
probes are discussed.

Jets Some major open questions in jet physics are listed below. These questions are not independent of
each other. Due to the connection between the jet observables and the QGP itself, theoretical models which
incorporate information about the soft physics of the QGP, the jet-QGP interactions and the hadronization process
are necessary to compare experimental measurements to theory. Much recent work in this direction has been
done but more is needed to increase the variety of measurements and theory compared. Further advances in jet
substructure measurements will provide further constraints. Additionally, the upcoming high-luminosity data
from sPHENIX and STAR is necessary to constrain how the jet-QGP interactions depend on the temperature of
the QGP.

• How does the QGP resolve the color configuration of the parton shower? The parton shower develops
from the original hard-scattered parton to the final observed hadrons in the jet. The structure of the shower
varies jet-by-jet with the average properties dependent on the energy, color-charge and mass of the parton.
This developing shower interacts with the QGP. The question of how the QGP resolves the parton shower
is key to understanding how jets are quenched. Measurements which vary the average jet properties
(e.g. photon-tagged jets to enhance the fraction of quark-jets relative to an inclusive jet sample) and
measurements which select jet-by-jet on the jet substructure are key to answering this question.

– How does the QGP resolve the structure of the parton shower?

As discussed previously 2.1.3, jet quenching has been shown to depend on the structure of the jet itself.
It is key to understand this quantitatively in terms of whether there is a coherence length in the QGP,
below which two separate color charges can not be resolved within the QGP [944]. In order to answer this
question measurements of jet quenching as a function of jet substructure and theoretical models that depend
on the coherence length are needed at both RHIC and the LHC over a wide kinematic range. Applying
ML to design new jet observables directly from the data will be helpful in this study as well [1172].

• What is the temperature dependence to the QGP opacity? Measurements at sPHENIX, along with
improved theoretical models, will provide key constraints on the opacity.

• Is there emergent intermediate scale structure in the QGP? Measurements of modifications to the
back-to-back jet (hadron) distributions and/or modification of the distance between subjets inside a jet will
provide crucial information on this.

• How does jet quenching depend on the spacetime evolution of the QGP it travels through? Is there
a minimum time/length of QGP that the jet must interact with to experience jet quenching? Current
measurements of the v2 and v3 of jet/high-pT hadrons show that jet quenching is sensitive to the average
path length of a class of jets through the QGP. However, a non-zero value of v2 is also observed for high-pT

hadrons in p+Pb collisions [378]. Is this v2 due to some other source? The most direct way to test this is
through measurements of jet quenching in small symmetric collision systems such as O+O [1173] where
the system size is near that of central p+A collisions, but the geometry is more similar to Pb+Pb collisions.
Measurements here might suggest that there is a minimum time/length scale needed for appreciable
quenching to occur. Additionally, since quenching depends on the structure of the developing parton
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Jet and Photon Physics Physics Projections 2023–2025
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Figure 4.1: Projected total yields (left) and RAA (right) for jets, photons, and charged hadrons in 0–10%
Au+Au events and p+p events, for the first three years of sPHENIX data-taking.

Signal Au+Au 0–10% Counts p+p Counts

Jets pT > 20 GeV 22 000 000 11 000 000

Jets pT > 40 GeV 65 000 31 000

Direct Photons pT > 20 GeV 47 000 5 800

Direct Photons pT > 30 GeV 2 400 290

Charged Hadrons pT > 25 GeV 4 300 4 100

Table 4.1: Projected counts for jet, direct photon, and charged hadron events above the indicated
threshold pT from the sPHENIX proposed 2023–2025 data taking. These estimates correspond to the
28 cryo-week scenarios.

photons.

As another way of indicating the kinematic reach of these probes, the nuclear modification factor
RAA for each is shown in Figure 4.1 (right). There are varying theoretical predictions concerning
the behavior of the RAA at higher pT which will be definitively resolved with sPHENIX data.

The projection plots above indicate the total kinematic reach for certain measurements, such as
those which explore the kinematic dependence of energy loss. For other measurements, it is useful
to have a large sample of physics objects to study the properties of their intra-event correlations,
for example for jets (their internal structure), photons (for photon+jet correlations), and hadrons
(for hadron-triggered semi-inclusive jet measurements). We illustrate the total yields in sPHENIX
above some example pT thresholds in Table 4.1. We highlight that, in many cases, it is the p+p
baseline rather than the Au+Au data will be the dominant contributor to the statistical uncertainties
in many of the unique, flagship sPHENIX measurements.

Several specific examples of sPHENIX projections for jet correlations and jet properties follow

22

Figure 33: Left: Counts of jets, hadrons and direct photons projected from sPHENIX operation in p+p and
0–10% central Au+Au collisions. Right: The nuclear modification factor RAA as a function of pT for 0–10%
central Au+Au collisions expected from sPHENIX operation. The error bars show the statistical uncertainties
only. Both plots are from Ref. [1176].

shower, the path-lenth dependence of jet quenching could depend on the structure of the parton shower.
Identifying such a dependence requires a huge sample of jets to isolate both the geometry of the jet
trajectory and the structure of the jet. Jets at RHIC and the LHC also evolve starting at very different
virtuality scales that influence how they interact with the QGP. This is a key question for both RHIC and
the LHC over the next several years.

• What are the non-equilibrium processes governing the energy flow from the jet to the QGP over
three orders of magnitude? How does the energy lost by the jet become part of the QGP itself? Are
there turbulent processes? How does the medium respond to the the energy deposition from the jet?
How does this process affect the formation of the observed final state hadrons? Is there an observable
vorticity around the jet [1174]. Experimentally isolating the response of the medium from the quenched
jet itself is experimentally challenging. Recently, it has been proposed that the particle species mix, the
hadrochemistry, might be a key signature of the medium response [1175]. Jet fragmentation dominantly
produces mesons over baryons. However, the enhanced baryon-meson ratio that is characteristic of
coalescence in the soft-sector of the QGP, could be also seen in medium response.

Due to the need to measure both the jet structure and geometry dependence of jet quenching, huge samples
of jets are needed at both RHIC and the LHC to answer the science questions outlined above. sPHENIX is
specifically optimized to measure jets and will provide unbiased samples of jets over nearly the entire allowed
kinematic range at RHIC, as shown in Fig. 33. Crucially, this will allow measurement of jets at the same pT

at both RHIC and the LHC. STAR and ALICE can also contribute to such comparisons, for example with
semi-inclusive gamma+jet and h+jet measurements. Additionally, along with direct photon data from STAR,
sPHENIX will provide a sample of direct photon data sufficient to tag photon-jet pairs for photons with more
than pT > 30 GeV. At the LHC, the large luminosity Pb+Pb sample planned for Runs 3 and 4 will provide much
more differential jet measurements than are currently available [1132, 1134].

There is also interest in running smaller collision systems at both the LHC and RHIC. The LHC is currently
planning on a short O+O run in 2024. Those data will be important for understanding the lack of evidence for
jet quenching in p+A collisions. RHIC has run O+O collisions for STAR (though the results are not yet publicly
available). The sPHENIX Collaboration would like to take data with both O+O and Ar+Ar collisions if the
opportunity to run beyond the nominal sPHENIX run plan arises [1176].

Heavy flavor Progress in understanding heavy flavor hadronization requires: an improved space-time picture of
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Fig. 20: ALICE measurement performance for the ⇤c/D0 (left) and ⇤b/B+ ratios in central Pb–Pb
collisions (Lint = 10 nb�1), based on studies from [263]. Figures from Ref. [1].

ments cannot be extended to the very-low-momentum region, where the separation of the heavy-flavour
secondary vertex from the primary vertex is small. This limitation motivates studies for a further im-
provement of the ALICE inner tracker during LS3 [302]. A more precise measurement would open the
possibility to test in the charm sector some features at present only observed for the v2 of light-flavour
hadrons: the mass scaling at low pT and the baryon–meson grouping at high pT.

5.4.3 Impact of hadronisation models on QGP characterisation
The hadronisation mechanism of heavy quarks is important for the description of the measured heavy-
flavour RAA and v2 at RHIC and LHC energies. In particular, it has been recognized that recombination
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Figure 34: Projection for LHC Run 3 and 4 for Λb/B+ (right) as a function of transverse momentum from
ALICE. Fig. is from Ref. [1134].

coalescence and better constraints on the Wigner functions [1177]; a more precise determination of the heavy
quark and gluon fragmentation functions [1178, 1179]; and understanding of meson production, absorption and/or
dissociation in matter. Here we discuss how the interplay of theoretical developments and new experimental
measurements at RHIC and LHC can advance our understanding of heavy flavor. Higher statistics RAA, v2, and
v3 data will significantly reduce the uncertainties on the heavy quark transport coefficients and provide better
insights into the initial production, hadronization and evolution of heavy flavor hadrons. New data expected in
LHC Runs 3 and 4 should provide much more precise constraints than currently available [1134, 1180, 1181].
Figure 34 shows the projections from ALICE for Λb/B+, which has not yet been measured in heavy-ion collisions.
sPHENIX also expects to make very precise measurements of the Λc/D0 in Au+Au collisions [1176]. In the
further future, ALICE3 [1170], the LHCb Upgrade II [1182] and the CMS timing detector upgrade [1183] would
provide even further improved precision for these observables.

Detector upgrades, together with improved luminosities at both RHIC and LHC, will enable measurements
of unprecedented precision of various heavy flavor observables. One targeted measurement is precision RAA and
v2 for open bottom hadrons (or their decay daughters) and jets over a broad pT region. At high pT , combining
charm, bottom and light flavor data would allow a systematic investigation of the relative contributions of
collisional and radiative energy loss and the transition between them. At low pT , the open bottom v2 (together
with charm v2) will address the temperature dependence of the heavy-flavor diffusion coefficient in QCD matter
at higher precision. Concurrently, the hadro-chemistry of heavy-flavor hadrons, including charm and bottom
baryons, will provide a deeper understanding of the coalescence mechanism and may provide insight into color
confinement.

Resummation of in-medium branching processes is necessary to improve predictions of heavy quark tagged
jets and their substructure for sPHENIX. Machine learning techniques [952] can be implemented to analyze
high-pT heavy flavor data from A + A collisions. The transition from the diffusive elastic to radiative energy loss
regimes can be studied theoretically by combining lattice QCD-constrained interactions with effective theories of
gluon emission. Comparison of heavy flavor observables can identify the relevant momentum scales. Finally, the
commonalities between heavy flavor production in A + A and e + A collisions [1184, 1185] should be explored.

Quarkonia The sPHENIX experiment is optimized to measure the nuclear modification of separated Upsilon
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states to high precision in Au+Au collisions. The design mass resolution of sPHENIX at 10 GeV/c2 is 100
MeV/c2, sufficient to resolve the three states, and Fig. 35 shows the estimated sPHENIX performance for the Υ

measurement over the full three year program [1176]. The Υ(3S) was recently observed in Pb+Pb collisions for
the first time by CMS [1186] at the LHC. In these sPHENIX projections, the modification of the Υ(3S) state was
assumed to be the same as that observed by CMS; it will be interesting to see what the behavior of the Υ(3S) is at
RHIC. Also shown is the STAR Υ(2S) measurement [290]. The sPHENIX Υ measurements, combined with the
LHC data, are expected to provide much stronger constraints on bottomonium suppression models in heavy ion
collisions. Furthermore, the sPHENIX measurements will provide a unique opportunity to probe the frequency
dependence of the chromoelectric field correlator describing quarkonium in-medium dynamics [837, 1187].
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collisions. (Right) The pT dependence of the upsilon RAA for the separated 1S, 2S and 3S states for 0-60%
central collisions, compared with the STAR measurement for the 1S separated 2S states [290]. Both figures are
from Ref. [1176]

Exotic hadrons Several key detector upgrades are also currently underway that will directly improve mea-
surements of exotic hadrons in heavy ion collisions. The entire LHCb tracking system has been replaced with
detectors of higher granularity, which will enable measurements in Pb+Pb collisions up to ∼ 30% centrality
[1180]. An upgrade to the fixed target system at LHCb will enable high-statistics p+ A data sets to be collected at
lower center of mass energies where coalescence effects are expected to be small [1188]. The CMS experiment is
pursuing the addition of particle ID detectors which will greatly aid in rejecting combinatorial background when
reconstructing hadronic decays of exotic hadrons, allowing access to states at lower pT than currently possible at
CMS [1189]. In the farther future, for Run-5, LHCb will be further upgraded to remove all centrality limitations
[1182], and the ALICE3 detector, with full particle ID and a fast DAQ, will be well suited to measurements of
exotics in heavy ion collisions [1170].

Intrinsic charm The existence of intrinsic (non-perturbative) charm in the proton has long been postulated
[1190–1192] to arise from configurations of the proton such as |uudcc〉 and manifest at large x when a proton in
this state interacts [1190, 1191, 1193]. Experimental measurements [1194–1196] have provided tantalizing hints
of intrinsic charm but no firm evidence. LHCb recently measured Z + charm jets at large Z rapidity and showed
it to be consistent with a 1% intrinsic charm component [1197]. In addition, J/ψ distributions from intrinsic
charm have been calculated and compared favorably to p + A data [1198–1200]. The NNPDF Collaboration
found evidence for the existence of intrinsic charm to a 3σ level [1201], while other global fits [1202–1205] find
no such evidence. Several experiments, either currently taking data or planned, could help resolve the question
of intrinsic charm in the next few years [1200] including the current System for Measuring Overlap with Gas
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(SMOG) fixed-target mode at LHCb [1206], at energies of
√

sNN ≤ 110 GeV, and future fixed target programs
such as NA60+, proposed for the CERN Super Proton Synchrotron (SPS) [1207]. Intrinsic charm could also be
observed at the EIC, particularly in measurements in the proton-going direction. These empirical measurements
may also shed light on the necessary theoretical developments to map formulations of nonperturbative charm at
the level of the nucleon wave function to QCD factorization-based approaches.

3.2.4 Initial State and Small-x
As details of the initial state become more and more relevant with the increasing experimental precision,

all features of the incoming nuclei will have to be considered carefully. This includes nuclear deformation,
short-range correlations, alpha-clustering, etc. Close collaboration with nuclear structure experts and research
into connecting low and high energy collisions will be important. Furthermore, subnucleonic structure, as
measured in electron-ion collisions and quantified with GPDs or even Wigner distributions or generalized
transverse momentum dependent parton distribution functions (GTMDs) will play an increasingly important role
in the description of p + p and heavy ion collisions. Important measurements will be for example diffractive
dijet and vector meson production in UPCs and at the future EIC, which will also require further theory progress,
including on fundamental questions concerning the definition of coherent processes [1208].

All this information can provide input for a variety of initial state models, of which two major types can
be distinguished. On the one hand there will be those models appropriate for low energy collisions, which
ideally include some dynamics and are interweaved with the early time evolution. On the other hand, there are
more ab-initio models valid in the high energy limit, which should be systematically improved, for example by
including quark degrees of freedom and non-conformality, as well as a fully three dimensional spatial distribution.
Connecting either model to hydrodynamic simulations might demand an intermediate stage of pre-equilibrium
evolution, as further discussed in Sec. 3.1.3. Besides the fluctuating spatial distribution of the energy momentum
tensor and the conserved charges, computing some observables, such as those sensitive to the chiral magnetic
effect, also requires models for the initial electromagnetic fields, which require refinement.

The case for varying collision systems A way to disentangle initial state from final state properties is to study
a wide range of collision systems. The nuclear structure and produced initial condition vary in a non-monotonic
fashion with N and Z, whereas the hydrodynamic response varies smoothly and slowly with the mass number,
N + Z. Hence, isobar or isobar-like systems with nearly identical hydrodynamic response but large structure
differences can be used to separate initial from final state properties and constrain initial state models [303].

Models can be constrained using collisions of nuclei with well known properties, such as the doubly-magic
208Pb or 132Sn. Then, predictions can be made for other species and consistency with low-energy nuclear
structure knowledge checked. Medium to small systems can expose the role of sub-nucleon fluctuations, initial
momentum anisotropy, and the hydrodynamization process. In particular the exploration of isobar or isobar-like
collisions in the region from 12C to 48Ca with different structures, which are nowadays accessible to cutting-edge
ab initio calculations, will improve our understanding of the emergence of collectivity. Exploiting isobar ratios
for bulk observables as a function of rapidity and

√
sNN may further provide access to the x-dependence of

nPDFs and gluon saturation, complementing the science goals of the EIC.
The initial conditions for hard probes are typically modeled by convoluting information from the Glauber

model with the nPDF, which contributes to a large uncertainty in the relevant transport properties [110, 1209,
1210]. By constructing ratios (between collision systems) of selected high-pT observables at a fixed centrality,
jet quenching effects are expected to cancel and deviation of ratios from unity provide access to flavor-dependent
nPDFs [1211–1213]. Such measurements would require high-luminosity runs in both collision systems. Projec-
tions of the feasibility of these measurements have not yet been carried out.

The role of ultraperipheral collisions UPCs connect heavy-ion collisions to both cold QCD physics and the
EIC. In terms of vector meson (VM) and jet photoproduction, other observables, e.g., single jet or high-pT
particle production, association of forward neutron production from QED, and light (e.g., φ) and heavy (e.g.,
Υ) VM threshold production, are of great interest. Species dependence, approximately the same as the dipole
size dependence and scale dependence, can provide unique insights into the nuclear modification mechanism
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of parton densities. Energy dependence, enabled by experiments at both RHIC and the LHC, e.g., the STAR
forward detector and the ALICE’s FoCal [1214], will provide widest kinematic phase space coverage, which will
be complementary to that at the EIC. New observables, e.g., combining VMs and jets together in both protons
and heavy nuclei, could provide one of the most rigorous experimental tests to nuclear shadowing and gluon
saturation models. This is similar to one of the “day-one” measurements at the EIC. Looking further ahead, by
the mid/late 2030s, the proposed ALICE 3 detector [1170] will have acceptance for both charged and neutral
particles, over a very wide solid angle, with coverage expected for pseudorapidity. ATLAS and CMS will also
cover |η| < 4 by Run 4. This will offer a very large increase in acceptance for more complex UPC final states.

Furthermore, significant progress has been made in the physics of photon interactions. Experimental
measurements and theoretical descriptions have been progressing from the initial observations toward quantitative
and precise comparisons. For example, polarized photons have been used and proposed as a tool to test and define
the photon Wigner function [1215–1219], to probe the properties of the QGP [60, 128, 1220–1223], to measure
nuclear charge and mass radii [332, 1224, 1225], to study gluon structure inside nuclei [342, 1226, 1227] and to
investigate new quantum effects [332, 1226, 1228–1231].

In addition, not only exclusive observables will be measured in the future, recent studies have also indicated
important physics implication of inclusive particle photoproduction. The ATLAS measurement of second-order
Fourier harmonics of charged particles in γ+Pb has provided an important experimental input to the origin of
collectivity in heavy-ion collisions, a long-standing question to be solved in the next decade. Also, searching
for the baryon junction, a fundamental nonperturbative structure connected to color confinement in QCD, has
been extensively studied in hadronic collision. Recently, a new idea of searching for baryon junctions has been
proposed in γ+Au UPC events [1232]. The physics of baryon stopping is also intimately related to backward
photoproduction of mesons [1233], accessible at the EIC [1234].

3.2.5 Small Size Limit of the QGP
There is much work to be done in understanding the small size limit of the QGP. Past measurements have

focused on p+p and p+A collisions, particularly at the LHC. The large acceptance and high rate of sPHENIX
will allow for more detailed measurements in p+Au collisions at RHIC including multi-particle cumulants, open
heavy flavor mesons and measurements of charged particle and jet vn at high transverse momentum. Additionally,
there is great interest in collecting data with systems which are of similar size to p+A collisions but which are
symmetric, such as O+O [1173, 1235] (see Sect 3.2.1 and Sec. 3.2.3) in order to smoothly map the evolution
of small systems to larger ones. The d+Au and O+O data taken by STAR and future p+Au data during the
sPHENIX running will enable such mapping, and in particular pin down the role of longitudinal decorrelations
and subnucleonic fluctuations. For all small systems, theoretical modeling has to be improved, in particular the
initial states and earliest stages of the collision, which are far from equilibrium.

The observation of evidence for collective flow in γ+A collisions (see Sec. 2.1.5) has challenged theoretical
modeling of these systems. Recent work [1236] suggests that full (3+1)D hydrodynamical modeling is necessary
to characterize γ+A collisions. More theoretical modeling and measurements are needed to see to what extent
this conclusion applies to other asymmetric collision systems. These can even be applied to high multiplicity
events in future electron-ion collisions at the EIC. Additionally, there is much work to be done to determine
if there are other observables, besides the vn of charged particles, to further characterize the nature of these
collisions. The next generation of theoretical models needs to include nucleon configurations from ab initio
nuclear structure physics. Furthermore, integrating with high energy small-x evolution would enable theoretical
models to systematically include sub-nucleonic fluctuations and how they evolve with collision energy.

A major outstanding question in small collision systems is the absence of a conclusive observation of jet
quenching in any p+A or p+p measurement. Experimentally, more precise measurements in p+A collisions are
necessary to see a potentially small signal. In order to estimate the size of any jet quenching expectations, light
ion collisions are essential. This would provide a clean way to bridge between p+A and A+A collisions because
measurements of jet quenching in peripheral Pb+Pb and Au+Au collisions suffer from large uncertainties.
Finally, realistic theoretical modeling of jet quenching expectations in p+A collisions is important to further
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constrain the size of any potential effect. All of these pieces are necessary to develop a coherent understanding
of the how the QGP works in the small size limit. Additionally, the modification of heavy flavor production
is important for jet quenching in small systems [1237–1239] because the system size changes the relative
significance of radiative and collisional energy loss.

3.2.6 Mapping the QCD Phase Diagram
The goals of the RHIC BES program are to (i) study the QCD phase structure with high-energy nuclear

collisions (The BES program covers the widest range in terms of baryon chemical potential, 20 - 780 MeV),
and (ii) search for the phase boundary and possible QCD critical point. The nuclear matter EOS in the high µB

region requires detailed investigations. Baryonic interactions including nucleon-nucleon, hyperon-nucleon and
hyperon-hyperon interactions are fundamental ingredients to understand QCD and the EOS that governs the
properties of nuclear matter and astrophysical objects such as neutron stars [1240]. Precise measurements for a
range of observables and collision energies are necessary to understand this physics [1241].

The NA61/SHINE experiment is an ongoing experiment at the CERN SPS, studying the properties of the
production of hadrons in collisions of beam particles (pions, and protons, beryllium, argon and xenon) with a
variety of fixed nuclear targets. The current program will continue until the end of 2024 and a program beyond
that is under discussion. The NA60+ experiment [1242] is planned as an upgrade to NA60 at the CERN SPS to
study dilepton and heavy-quark production in nucleus-nucleus and proton-nucleus collisions with center of mass
energies of 6–17.3 GeV. NA60+ is currently expected to start taking data around 2029.

The CBM experiment at FAIR [1169], will have a uniquely large interaction rate, see Fig. 36. It will
determine the EOS (check to be sure that EOS or EoS is used consistently throughout) of QCD matter in the
range

√
sNN = 2.9–4.9 GeV. FAIR is one of the top-priority facilities for nuclear physics in Europe, according to

NuPECC [1243, 1244]. The CBM physics program includes net-proton fluctuations, dileptons, multi-strange
hyperons and hypernuclei, polarization and spin alignment. These measurements will probe the first-order phase
boundary, the QCD critical point, and hypernuclear interactions pertinent also to the inner structure of compact
stars. The physics program is currently planned to start later this decade.

To maintain US leadership in the exploration of the QCD phase diagram at high baryon density after the
completion of the RHIC BES-II program, opportunities for targeted US participation in international facilities are
important to explore. A top priority is to complete the RHIC BES-II data analysis, which will help assess which
international experiments present the highest physics potential. One area of interest is the CBM Experiment at
FAIR [1146].

In
te

ra
c
ti
o

n
 R

a
te

s
 (

H
z
)

Collision Energy sNN
(GeV)

2 5 10 20 50 100 200

10

2
10

3
10

4
10

5
10

6
10

7
10

ALICE

STAR FXT NA61@SPS

HADES

MPD@NICA

NA60  @SPS+

CBM@FAIR

STAR@RHIC

sPHENIX

ALICE3

Heavy Ion Collisions

F
ix

e
d

−
ta

rg
e

t 
e

x
p

e
ri
m

e
n

ts

C
o

llid
e

r e
x
p

e
rim

e
n

ts

Figure 36: Collision rates as a function
of
√

sNN for collider experiments in red,
and fixed-target (FXT) experiments in
blue. Comparing to the collider exper-
iments, more than four orders of mag-
nitude improvement in collision rates
can be achieved with the future CBM
experiment at FAIR [1245, 1246].

3.2.7 Chirality and Vorticity in QCD

Chiral magnetic effect The precision measurements from the RHIC isobar collisions largely constrain the
observability of the CME in heavy ion collisions and narrow down future CME searches [1247]. A number
of possible directions have been identified for the CME in the post-isobar era [1248]. One possible direction
is to study lower energy collisions in which the prerequisites of the CME phenomenon are expected to be
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different due to the enhancement of topological fluctuations [1249] (also see [1250] for other effects). The recent
measurement from the STAR collaboration using the event plane detectors capable of measuring the spectator
proton-rich plane has put constraints on the observability of CME in

√
sNN = 27 GeV Au+Au collisions [1251].

This work paves the way to future CME searches with the high statistics data from the RHIC BES-II using novel
techniques such as event-shape engineering [1252]. Another avenue is to revisit the analysis of Au+Au collisions
√sNN = 200 GeV in which signal/background ratio is expected to be larger than that of isobar collisions [1253].
Estimates from the STAR collaboration indicate that a 5σ significance on the possible CME signal fraction
can be achieved if 20 billion Au+Au events are collected during the remaining RHIC running [1248]. Besides
the CME search, a number of other measurements related to chiral effects will be investigated by the STAR
collaboration in the coming years [1254, 1255].

Vorticity There remain several additional open questions on vorticity in heavy-ion collisions. One is the
distribution of vorticity in rapidity. Most models that reproduce the falling energy dependence of global
polarization at midrapidity predict a rising polarization at forward rapidity, as the fluid vorticity migrates towards
the spectator region [1256–1261]; others [1262–1264] predict smaller polarization at forward rapidity. So far,
the data show a rapidity-independent polarization, though the rapidity coverage is quite limited. Measurements
of global polarization at forward rapidity may discriminate between different physics scenarios that produce
similar results at midrapidity.

There are new vorticity signatures yet to be explored experimentally. At forward rapidity, hydrodynamic
and transport simulations at all energies predict [1258, 1265–1267] a circular vorticity pattern superimposed on
the global vorticity, due to the interplay between transverse and longitudinal gradients in temperature and flow.
The transfer of energy and momentum from a jet to the surrounding medium should produce a toroidal vorticity
structure centered about the jet direction [1174, 1268, 1269], which may generate percent-level polarizations
observable through Λ-jet correlations sensitive to the quenching and fluid viscosity [1174]. Spin alignment
of vector mesons is another promising observable sensitive to the large angular momentum of the system
and indicative of quark polarization, and can provide new insight into the nature of the vector meson fields
[1270, 1271]. Additionally, it has been suggested [455, 1272] that in p+A collisions, a toroidal "vortex tube"
may be created at midrapidity, generating something akin to smoke rings centered on the beam direction. This
measurement has been proposed by the STAR Collaboration [1273].

3.2.8 Future Facilities for Hot QCD

Hot QCD at RHIC The RHIC facility began operation in 2000 and over the past two decades has collided
nuclei from protons to uranium at a wide range of collision energies spanning two orders of magnitude. The
remaining data to be taken at RHIC to complete its science mission is the sPHENIX program [1176]. This
program has three essential components: successfully commissioning the sPHENIX detector (the first new
collider detector to be commissioned in over a decade); collecting high luminosity p + p and p+Au data for
nucleon structure studies and as a heavy ion reference system; and taking high luminosity Au+Au data. The
total recorded Au+Au data is expected to be at least 21 nb−1. The p+p luminosity requirement is 62 pb−1 and
is driven by the need to have adequate statistics to use as an Au+Au reference measurement. These numbers
are used in all the projections in this document. This data is anticipated to be collected in three years of RHIC
running.

Given the versatility of RHIC and the variety of science questions it can address, the RHIC science potential
is in no way exhausted. While the sPHENIX science program is the “highest priority for the current RHIC
program" [1274], it is clear there are additional high priority scientific opportunities available at RHIC. While
the currently scheduled RHIC program consistes of p+p, p+Au, and Au+Au collisions, there are other unique
opportunities that may become available including: running O+O collisions to understand the system size
dependence of QGP properties, additional p+A running for vorticity measurements, nuclei scans to measure the
initial state, and many others. Following the completion of the RHIC science program, the RHIC infrastructure
is scheduled to become the basis of the EIC.
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LHC Participation in the heavy-ion program at the LHC is a key component of the US heavy-ion program. All
four LHC detectors have significant heavy-ion programs and the LHC heavy-ion program is already planned
to go through the end of Run 4 (currently expected in 2032). LHC Runs 3 and 4 over the next decade are
expected to provide more than approximately 10 nb−1 of Pb+Pb data [1134]. This is approximately five times
the maximum luminosity delivered to the experiments to date. Additionally, p+p running at the Pb+Pb center of
mass energy is an essential reference, and p+Pb runs are also planned.

In addition, a short run of O+O and p+O collisions is planned for 2024. O+O collisions would provide
key new data on both soft and hard probes in a system with approximately the same number of participants as
p+Pb collisions but which is, in contrast, symmetric, bridging the gap between peripheral Pb+Pb collisions and
p+Pb collisions. There is significant interest in this from the community [1173]. It is possible that a successful
O+O run would motivate further LHC running with light ions. In addition to the desire to study system size
dependence, the total nucleon-nucleon luminosity can be increased in heavy-ion runs by switching from large
nuclei (such as lead) to small nuclei (such as oxygen or argon) [1134].

All experiments have significantly upgraded their detectors since the LHC turn on. With the start of LHC Run
3 in 2022, ALICE began taking data with the "ALICE2" upgrades [1275] which upgraded the data-taking rate,
allowing readout at 50 kHz, and a new Inner Tracking System (ITS) which will improve the resolution on the
distance of closest approach to the primary vertex by a factor of three. Together, these upgrades will dramatically
improve the physics reach of the ALICE detector, especially for rare probes involving heavy-flavor and other
identified particles. Also prior to Run 3, the LHCb collaboration has completed the first of a series of detector
upgrades, Upgrade 1 [1276]. The entire LHCb tracking system was replaced with higher-granularity detectors,
which can reconstruct PbPb collisions up to 30% centrality (previously the limit was 60%). All hardware triggers
were removed in favor of an advanced streaming readout system that will sample the full luminosity delivered
by the LHC [1277]. In addition, a dedicated storage cell was installed for the gaseous fixed-target which will
greatly increase the rate of beam+gas collisions [1188]. This upgraded SMOG2 system is expected to operate
concurrently with the collider for all beam species, providing large fixed-target data samples with multiple beam
and target species at center of mass energies near 100 GeV.

For Run 4, both ATLAS and CMS are planning major upgrades with direct benefit to the heavy-ion physics
program. Both ATLAS and CMS will have upgraded trackers which can measure charged particles in |η| < 4,
compared to |η| < 2.5 with the current detectors. This increased acceptance will, among other things, allow for
jet structure and substructure measurements over a wider rapidity range. At fixed pT , there is a higher probability
for quark jets than gluon jets at forward rapidity, providing a new means of understanding how parton showers
develop in the QGP. Additionally, CMS is planning a new timing detector [1183] which can make additional
measurements with identified hadrons. Prior to Run 4 LHCb will implement Upgrade 1b, which will include
new tracking detectors placed inside the LHCb dipole magnet and a new silicon detector near the beampipe.
The magnet station trackers will allow tracks from soft particles which terminate in the magnet walls to be
reconstructed, giving new access to very low pT open heavy flavor and exotic states. The new silicon detector
will provide additional tracking points that will further increase the centrality range accessible by LHCb. On the
same timescale, ALICE is planning to install a forward calorimeter upgrade, the FOCAL [1170, 1278].

LHC upgrades for Run 5 and beyond For LHC Run 5 (currently planned for 2035-38), ALICE is planning
an entirely new detector, "ALICE3" to further improve the most difficult measurements in heavy-ion colli-
sions [1170]. In the current LHC projections, over Runs 5 and 6, ALICE3 would take 20 times more data than
ALICE in Runs 3 and 4 [1279]. This extremely large data sample would include very detailed identified particle
measurements, making qualitative improvements on answers to the questions outlined in the previous section.
Additionally, the very low mass silicon tracking is expected to make precise dilepton measurements, impossible
with any of the current LHC detectors. On the same timescale LHCb is planning Upgrade II [1182, 1280]. This
upgrade would allow LHCb to make measurements over the full centrality range of heavy-ion collisions for the
first time, providing very precise forward measurements, including access to quarkonia and open heavy flavors at
very low pT and forward rapidity in p+A and A+A collisions.
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The physics case for all of these upgrades will continue to develop with the new measurements coming out of
the LHC and RHIC. In order to meet the Run 5 timeline, funding for R&D for these projects should begin soon.

It is possible to increase the nucleon-nucleon luminosity by running with smaller collision systems. This
is offset by the expectation that QGP effects will be largest in the largest collision systems. Experience with
smaller collision systems in the near future will inform whether there is a more optimal collision system to run at
the LHC than Pb+Pb [1170].

3.3 Cold QCD in the Next Decade
As outlined and described in Sec. 2.2, the hadron physics community has made tremendous progress in

answering the fundamental questions concerning the building blocks of our universe, such as the mass and
spin origins of the nucleon, the tomographic imaging of partons inside the hadrons, and nucleon many body
interactions encoded in partonic structures in the nucleus. The progress made in these directions since the last
LRP has demonstrated the powerful reach of hadron physics facilities to unveil the underlying QCD dynamics and
the associated non-perturbative structure of nucleons and nuclei. We will continue to deepen our understanding
of these questions, focusing on the following aspects:

• Nucleon properties including the proton charge radius and (generalized) polarizabilities of the nucleon;
• Precision measurements of the polarized and unpolarized quark distributions in the large-x region, in

particular when x→ 1;
• Unprecedented mapping of the 3D tomography of quark distributions inside nucleons;
• Unveiling the spin and mass origins of the nucleon, especially for the quark orbital angular momentum

contribution to the proton spin and the trace anomaly contribution to the proton mass;
• Nucleon-nucleon short range correlations in nuclei and the nuclear modification of the parton distributions

in the valence region;
• Precision meson and baryon spectroscopy to unravel the spectrum and structure of conventional and exotic

hadrons;
• Parity-violation measurements and connections to other fields.

As this document is written, RHIC will be transitioning to EIC construction within the next 5 years, while
CEBAF will continue to operate with fully scheduled programs for at least another decade. We describe below
cold QCD research expected from both facilities.

3.3.1 Cold QCD with CEBAF and the SoLID Physics Program
CEBAF was originally designed to conduct coincidence experiments, but its physics program as well as

experimental halls have evolved to meet the ever-changing development and needs of hadronic physics studies
over the years. Most notably, CEBAF was successfully upgraded to double its energy to 12 GeV during the
previous LRP period. The higher beam energy, along with the addition of experimental Hall D and upgrades of
detectors in other halls, allowed our studies of hadronic physics to expand into new kinematic regions and to
search for and study exotic hybrid mesons. Moving forward, CEBAF will remain in high demand as a QCD
facility because of its high luminosity and the mid-scale, high intensity SoLID program, see Fig. 37.

Meanwhile, smaller-scale spectrometers and specialized detectors continue to be built, such as the Super
BigBite Spectrometer (SBS), Neutral Particle Spectrometer (NPS), Low Energy Recoil Tracker (ALERT), to
name a few. The remainder of this section presents an overview of upcoming programs at CEBAF. Some of the
topics presented could persist into the EIC era.

The SoLID physics program With the study of nucleon structure evolving from single- to multi-dimensional
measurements that utilize exclusive processes, the quest for understanding the origin of the proton mass based
on studies of near-threshold meson production, frontier cold QCD research requires, first and foremost, higher
statistics. Similarly, Parity Violating Electron Scattering (PVES) that requires increasing statistical precision to
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Figure 37: Landscape of the cold
QCD program at the DIS facili-
ties. SoLID expands the luminos-
ity frontier in the large x region
whereas the EIC does the same
for low x. Together, JLab+SoLID
and the EIC will, over the next
several decades, cover a broad
and largely complementary kine-
matic range, with SoLID probing
key physics and providing preci-
sion data primarily in the high-x
region. Figure from [1281, 1282].

test the Standard Model at low- to medium-energies. Such emerging needs from both QCD and fundamental
symmetries call for a truly large acceptance, high-intensity device, to fully capitalize on the high-luminosity
beam of CEBAF. The Solenoidal Large Intensity Device (SoLID), planned for JLab as an integral part of the
CEBAF 12 GeV program, was designed to meet such needs. SoLID will utilize the CLEO-II 1.4-T solenoid
magnet and a large-acceptance detector system covering 2π in azimuth and will be able to operate at luminosities
up to 1039 cm−2s−1. The realization of SoLID in JLab Hall A is shown in Fig. 38.

  

Jefferson Lab 
Hall A

beamline

HRS-L

HRS-R

SoLID

endcap

Figure 38: Schematic lay-
out of SoLID in Hall A
of JLab, with the endcap
pulled downstream to al-
low detector installation and
reconfiguration. The two
high resolution spectrome-
ters (HRS-L and HRS-R,
not in use) are parked at
backward angles.

As a multi-purpose device, SoLID currently has seven experimental proposals and several run-group
proposals approved by the JLab Program Advisory Committee. Three SIDIS experiments, with transversely
and longitudinally polarized 3He and transversely polarized protons, will precisely extract TMDs in the valance
quark region and determine the u and d-quark tensor charge, see Fig. 39 left. An experiment studying electro-
and photo-production of J/ψ near threshold probes the gluonic field and its contribution to the proton mass, see
Section 3.3.3. A parity-violating DIS experiment will determine the effective electron-quark couplings of the
Standard Model, pushing the limits in phase space to search for new physics (Section 5.4.2), and will provide the
PDF ratio d/u at high x, see Fig. 39 right. The two most recently approved experiments include a measurement
of TPE with beam SSA in DIS, and a PVES measurement to study isospin dependence of the EMC effect. The
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run-group experiments include SIDIS with kaon and di-hadron production, transverse inclusive spin structure
functions, and exploration of GPDs with deep-exclusive reactions to study the 3D structure of the nucleon in
coordinate space.
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Figure 39: Projected impact of the SoLID program on: (left) the d vs. u tensor charge from SIDIS measurements;
and (right) the PDF ratio d/u from PVDIS proton measurement. See [1282] for details.

3.3.2 Properties of the Nucleon

PRad-II The PRad experiment (see Section 2.2.1), using innovative methods, provided data on the proton
charge radius with high precision, but is in direct conflict with all modern electron scattering experiments. The
newly approved PRad-II experiment will address this discrepancy with a projected total uncertainty of 0.43%, a
factor of 3.8 smaller than that of the PRad result, and better than the most precise result from ordinary hydrogen
spectroscopy measurements [1283]. This level of precision has the potential to inform whether there is any
difference between e + p scattering and muonic hydrogen results, as well as to evaluate the consistency of
systematic uncertainties of muonic hydrogen measurements.

Future polarizability and generalized polarizability measurements In the next seven years, the complemen-
tarity of the MAMI and HIGS facilities will be leveraged to access a wide variety of energies and observables for
the nucleon polarizability measurements [475], with strong collaboration between experimental and theoretical
efforts, see, e.g, [1284]. Exploring a variety of few-nucleon targets is essential for high-accuracy extractions
of the neutron polarizabilities and validation of the subtraction of nuclear binding effects. The first values
of the neutron spin polarizabilities and improved determinations for the proton will provide insights into the
low-energy spin structure of the nucleon, enhancing our understanding of the mechanisms that generate them
and complementing the nucleon-structure experiments at JLab, RHIC, and the EIC.

Plans for future measurements of the proton generalized polarizabilities at JLab are currently underway. One
major goal is to determine the shape of αE(Q2) to high precision. This will serve as valuable theoretical input for
determining the mechanism responsible for the effect. Another goal is to accurately describe βM(Q2) at low Q2

which is currently not well understood due to large uncertainties on the existing data, in particularly at Q2 = 0
where recent results are in conflict [483, 484]. A positron beam, proposed to be developed at JLab, can provide
an independent cross-check in a different reaction channel [1285], particularly in light of the recently reported
puzzling results for the proton αE(Q2) [493].

Two photon exchange measurements As mentioned in Section 2.2.1, a full understanding of TPE in e + p
elastic scattering is critical for correctly interpreting proton form factor measurements. The luminosity and
quality of a positron beam would provide dramatically improved direct measurements of TPE in elastic scattering,
in particular in the large-angle region where TPE is most important. In addition, several new TPE observables

69



can be measured for the first time. As an example, the asymmetry of electron scattering when only the beam or
only the hadron (target) spin is polarized normal to the scattering plane is related to the imaginary part of the TPE
amplitude. Such SSAs have been measured in PVES experiments [1286–1291] with a polarized beam for elastic
scattering. While SSAs on lighter nuclei have confirmed theoretical predictions, the SSA on lead is unexplainably
small. Similar SSAs were measured at HERMES and JLab Hall A with polarized targets [1292–1294]. Each of
these observables provide independent constraints on the TPE amplitude, and are valuable for making theoretical
progress on the problem of so-called box diagrams which include TPE as well as the γZ-box correction relevant
to PVES, and the γW-box contributing to β-decay. An experiment was recently approved to access TPE by
measuring transversely-polarized beam SSA in DIS using SoLID, adding a new observable to the TPE study.

Quark distributions and polarizations at x → 1 As part of a complete three-dimensional mapping of the
parton (quark and gluon) distributions in the nucleon, the longitudinal momentum and spin carried by valence
quarks at very high Bjorken-x is still of great theoretical and experimental interest. At the same time, quark
distributions at large x are also needed as input for cross section calculations at colliders such as the LHC or
the Tevatron (see for example the recent results on the W mass [1295]). The current and future JLab program
studies the large x quark distributions and polarizations in three different experiments. The first experiment,
MARATHON, was highlighted in Section 2.2.2 and provided precision data on Fn

2/F
p
2 . Data have been collected

by the second such experiment, BONuS12 [525], and results are expected soon. The PVDIS proton program
of SoLID will provide d/u at high x without the use of nuclear models, as shown in the right panel of Fig. 39.
Additionally, data have been collected on double-polarization asymmetries of both the proton and 3He and results
on the down quark polarization ∆d/d are expected to be available concurrent with the release of the 2023 LRP.

3.3.3 Nucleon Femtography
As described in previous sections, the study of the nucleon structure is evolving from 1D structure functions

connected to collinear PDFs to also include multi-dimensional tomography in terms of parton GPDs and TMDs.
The ultimate goal is to experimentally determine the quantum mechanical Wigner distribution [1296] in phase
space. Semi-inclusive measurements, including spin polarization observables, were provided by the pioneering
measurements at HERMES, COMPASS, and the JLab 6 GeV program, among others. Results on GPDs and
TMDs are now published over limited ranges of the relevant kinematic variables. The upgraded detectors and
CEBAF beam energy and intensity, as well as the potential for polarized positron beams, promise to provide a
more detailed three-dimensional spatial mapping of the nucleon. Indeed, this is a major thrust of the JLab 12
GeV facility. Mapping the (2+1)D mixed spatial-momentum images of the nucleon in terms of GPDs has been
one of the important goals. On the other hand, 3D images in pure momentum space can be made with other
generalized distributions: the TMDs. These femto-scale images (or femtography) will provide, among other
insights, an intuitive understanding of how the fundamental properties of the nucleon, such as its mass and spin,
arise from the underlying quark and gluon degrees of freedom.

3D tomography from GPD measurements From the analysis of the DVCS data from HERA and HERMES at
DESY, as well as the results of new dedicated experiments at JLab, and at COMPASS at CERN, the experimental
constraints on the CFFs and the associated GPDs have been obtained from global extraction fits [866, 1297].
These data have also been used to generate some of the first 3D images of the proton [551], shown in Fig. 40.
However, data covering a sufficiently large kinematic range, and the many different polarization observables,
have not been systematically available. Moreover, meson production at JLab 6 GeV has not yet shown parton
dominance in scattering. The 12 GeV program at JLab will provide comprehensive information on these hard
diffractive processes, entering the precision era for GPD studies. Extracting a complete set of CFFs independently
in fixed kinematics requires a complete set of experiments. In addition, one needs to explore processes that will
give both x and skewness parameter ξ information, such as Double DVCS (DDVCS) or similar processes.

The extensive GPD program from the JLab experiments will provide unprecedented kinematic coverage and
precision. Among the approved experiments, Hall A proposed a precision measurement of the helicity dependent
and helity independent cross sections for the ep→ epγ reaction in DVCS kinematics. This is a follow up to the
successful Hall A DVCS run at 5.75 GeV [1298]. There are two important DVCS experiments in Hall B using
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Figure 40: Left: 3-dimensional representation of the x-dependence of the proton transverse charge radius. Right:
artistic illustration of the corresponding rising quark density and transverse extent as a function of x.

CLAS12 at 11 GeV and at lower energies of 6.6 and 8.8 GeV. These measurements cover a large kinematic
range, allowing a more comprehensive study of GPDs. In addition, to perform the flavor separation of GPDs,
the proposed experiment in Hall B will measure the beam spin asymmetry for incoherent DVCS scattering on
the deuteron, detecting the recoil neutron. Similar measurements will be made with spectator proton detection
in the BONUS and ALERT experiments. An experiment has been proposed to measure the target single spin
asymmetry on transversely polarized protons. The asymmetry has particular sensitivity to the GPD E(x, ξ) which
is related to the spin flip nucleon matrix element and hence carries important information on the up and down
quark OAM. For nuclear targets, the ALERT detector in tandem with CLAS12 will measure DVCS and deeply
virtual meson production (DVMP) off deuterium and 4He targets to explore nuclear effects on bound nucleon
GPDs.

Two other Compton-like processes, TCS and DDVCS, as well as hard exclusive meson production, are
accessible with JLab 12 GeV and have much to offer. As decsribed in Sec. 2.2, the preliminary result on the TCS
has demonstrated a unique perspective to constrain the quark GPDs. Future experiments of TCS and DDVCS in
JLab Halls B and C and SoLID in Hall A will continue to play important roles in comprehensive GPD studies.
In addition, experimental data from the 11 GeV beam will provide an important test of the DVMP mechanism.
Experiments have been proposed for π0 and η production with CLAS12 running contemporaneously with the
DVCS experiment, together with 8 GeV beam experiments to separate σL and σT . Measurement of the φ meson
will provide information on the gluon GPDs as well as study intrinsic strangeness.
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Threshold J/ψ production and proton mass Near threshold J/ψ production can provide unique access to the
gluon GPD and the form factors of the gluon EMT, providing important information on the mass structure of the
nucleon. At JLab 12 GeV, the J/ψ can be produced by photon and electron beams on the proton and nuclear
targets near threshold. Recent experimental results from JLab Halls C and D have been summarized in Sec. 2.2.
There are ongoing experiments in Hall B to measure TCS and J/ψ in photo-production on a hydrogen target,
with ∼ 10K events expected after the luminosity upgrade. Similar statistics are expected for a deuterium target.
Hall A has an approved experiment using SoLID and can obtain at least another order of magnitude more events
(∼800K in photoproduction and ∼20K in electroproduction), see Fig. 41. With this large number of threshold
events, one can fit the cross section as a function of W and t to obtain all three gluon EMT form factors, and
hence could shed light on the origin of the nucleon mass.

Figure 42: The impact of the SoLID SIDIS program on the u and d quark transversity (left) and Sivers distribution
(right). The wide uncertainty bands show the current results based on a global analysis of world data while the
narrower, darker bands show the SoLID projections. Figure from [1282].

Momentum tomography of the nucleon One of the most important questions about the 3D structure of the
nucleon is the transverse momentum dependence of parton distributions and fragmentation functions. The TMDs,
especially those depending on the correlations between the transverse momentum and the polarizations of the
partons and hadrons, provide a unique perspective on 3D nucleon tomography. At JLab, Halls A, B, and C are all
involved in 3D structure studies through measurements of azimuthal modulations in SIDIS for different hadron
types, targets, and polarizations over a broad kinematic range. The most celebrated SIDIS measurements on
TMDs are the surprising non-zero results of the Sivers asymmetries and the Collins asymmetries [1299–1301].
These initial explorations established the significance of the SIDIS-TMD experiments and attracted increased
efforts in both experimental and theoretical studies of TMDs. The planned SoLID experiments with transversely
polarized proton and 3He (neutron) targets will provide the most precise measurements of Sivers and Collins
asymmetries of charged pion and kaon production in the valance quark (large-x) region in 4-dimensions (x, Q2, z
and pT ). Figure 42 shows the projected precision of the extracted transversity h1(x) and Sivers function f⊥(1)

1T (x)
from the SoLID enhanced configuration for both u and d quarks compared to current results obtained from a
global analysis of world data [1302]. The impact on the nucleon tensor charge from these measurements was
highlighted in Sec. 3.3.1.

3.3.4 Meson Structure
Several experiments at JLab and planned for the EIC will validate the framework of meson femtography,

deepening the understanding of pions and kaons through studies of their form factors, structure functions and
masses [1303, 1304]. Extracting precise meson form factor data requires L/T separated cross sections and
control over systematic uncertainties. Over the last decade, JLab measurements have established confidence in
the reliability of deep exclusive meson production for probing internal meson structure [1305–1311].
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Figure 43: The left (right) panels show calculations, measurements, and projected uncertainties of recent
measurements of the pion (kaon) form factors.

The Super High Momentum Spectrometer (SHMS) in JLab Hall C is a unique facility for making precision
12 GeV measurements [1312], able to access meson form factors at high momentum transfer and small spatial
resolution. Two experiments, studying exclusive pion and kaon electroproduction respectively, made precision
separations of the L and T cross sections over the last three years. The projected uncertainties for these
experiments are shown in Fig. 43. In addition, the quark and gluon distributions are expected to differ substantially
in pions, kaons and nucleons. Planned measurements at JLab using the TDIS technique will provide data that
have the potential to settle the issues of quark distributions in the pions at high-x and provide the first data on
kaons.

3.3.5 Hadron Spectroscopy
The energies and quantum numbers of the excited state of any physical system provide important clues to the

underlying dynamics and relevant degrees of freedom. This is especially true in the case of hadrons, where the
spectrum of meson and baryon excitations established the quark model and QCD [1313, 1314] and continues
to provide unique information on strong interaction dynamics [1315, 1316]. The experimental results from the
JLab 6 GeV program on the nucleon resonance electroexcitation amplitudes provided unique information on the
structure of the excited states of the nucleon and their evolution with photon virtuality Q [1315, 1317, 1318].
Extension of these efforts towards high Q2 at JLab 12 GeV will explore the transition from the strongly coupled
to perturbative QCD regimes is anticipated.

However, the full picture has not been experimentally verified. It is generally argued that the best discovery
path is through searching for so-called “exotic” meson states, which have quantum numbers that cannot be
obtained with only quark–antiquark degrees of freedom. QCD and the quark model also predict a number of
baryon excitations that have yet to be observed experimentally. A new program at JLab will focus on mapping
the spectrum of baryons with strangeness. Excited states in this sector should be less numerous and more narrow
than for the nonstrange baryons, which will ameliorate the difficulties associated with overlapping resonances.
There have been a number of narrow charmonium states discovered in recent years [611], which defy description
in terms of the quark model. Their existence points to dynamics of multiquark states that should in principle be
predicted by QCD.

The experimental program at JLab is aggressively pursuing the current spectroscopic understanding of QCD
dynamics. This includes photoproduction of meson and baryon states in GlueX and CLAS12. It also includes
new advances in lattice QCD to clarify hadron spectroscopy, in concert with experimental measurements, and to
quantify the photoproduction cross sections of hadronic excited states, see Sec. 3.1.1.

3.3.6 QCD Studies of Nuclei
It has been nearly four decades since the European Muon Collaboration (EMC) published an astonishing

finding on how the nucleon PDFs are strongly modified in iron nuclei [1319]. Although some recent studies
suggest a connection to SRCs in nuclei, a full understanding of this phenomenon is still desired. Indeed, there
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are several ways in which QCD manifests itself in complex nuclei. CEBAF has contributed to this area of study,
see Sec. 2.2.6, and will continue to provide new experimental data.

Electron scattering gives access to a range of unique aspects of nuclear structure, providing important data
relevant to nuclear interactions at short distances, modifications of nucleon substructure in the nuclear medium,
and quark/hadron interactions in cold QCD matter. Precision measurements of nuclear elastic, quasielastic,
and inelastic scattering, especially those associated with the high-momentum part of the nucleon distributions,
provide critical nuclear structure information needed in a range of other areas of nuclear and high-energy physics.
Such data are needed as inputs to analyses of neutrino-nucleus scattering, nuclear astrophysics, lepton-nucleus
scattering, and heavy-ion collisions, as well as providing important constraints on models of neutron stars.
Studies of the partonic structure of nuclei provide insights into the impact of the dense nuclear medium on the
structure of protons and neutrons and will image the nuclear gluon distribution for the first time. In addition,
measurements at higher energy will study hadron formation over a wide range of kinematics, as well as quark
and hadron interactions with cold, dense nuclear matter, including color transparency, attempting to isolate
interactions of small-sized “pre-hadronic" quark configurations.

Key future programs include measurements which probe nuclear structure at extremes of nucleon momentum,
studies of the impact of the dense nuclear environment on the structure of the nucleon, and finally the use of
the nucleus to study the interaction of quarks and how they form hadrons in cold nuclear matter. Among these,
flavor dependence in the EMC effect should manifest in a number of experiments, e.g., by contrasting structure
function measurements in 40Ca and 48Ca. A novel method to measure the isovector EMC effect is via PVDIS
to obtain the γ-Z interference structure function FγZ

2 (x) and contrast this with the usual DIS structure function
to separate the u and d quark PDFs in the same nuclear target. A proposal to perform this experiment on 48Ca
using SoLID was approved for the JLab 12 GeV program. Interesting opportunities also exist in the comparison
of SIDIS on 3H and 3He with either π+ or π− detected in the final state. In addition, as discussed in Sec. 2.2.6,
the spin structure function EMC effect will provide complementary information on the EMC physcis and a first
measurement of the polarized EMC ratio in 7Li is planned to run at JLab using the CLAS12 spectrometer.

Last, a growing program of spectator tagging measurements has been recently developed, accessing both free
and bound nucleon structure, the latter by mapping out the impacts of the nuclear medium and strong nuclear
interactions. First measurements were recently made by the BONUS and BAND experiments, probing the free
neutron and deeply-bound proton respectively. The Hall B ALERT and Hall C Large Angle Detector (LAD)
experiments are approved to extend these studies as part of the JLab 12 GeV program and anticipated to continue
at the EIC using its far-forward fragment spectrometer.

3.3.7 Cold QCD Program at RHIC
As the realization of the EIC draws nearer, there is a growing scientific imperative to complete a set of

“must-do” measurements in p + p and p + A collisions in the remaining RHIC runs. The ongoing RHIC cold
QCD program of both STAR and the new sPHENIX will build on RHIC’s unique ability to collide a variety
of ion beams in addition to polarized protons [530]. The STAR forward upgrades, including forward tracking
capabilities, will make charged hadron identification and full jet reconstruction possible for the first time in the
forward direction. The sPHENIX detector is optimized for full jet econstruction at mid-rapidity and heavy-flavor
measurements [1320].

The new detectors will allow RHIC to extend the full complement of the existing transverse spin program
into new kinematic regimes of both lower and higher x domains. This includes measurements of forward single
spin asymmetries AN for charged hadrons h+/−, isolated π0 and full jet. The high statistical precision of recently
collected data at 510 GeV (Run 17 and Run 22) and at 200 GeV at the upcoming Run 24 will enable detailed
multi-dimensional binning for the Collins asymmetry measurements for h+/− and π0. STAR will extend the
Collins effect measurements to nuclei and investigate the universality of the Collins effect in hadron production
and the spin dependence of the hadronization process in cold nuclear matter. Moreover, the recently collected
and future STAR data will further reduce the uncertainties on the single-spin asymmetry of dijet opening angle
sensitive to the Sivers TMD parton distribution. This will provide a detailed mapping vs x for comparison to
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results for Sivers functions extracted from SIDIS, Drell-Yan, and vector boson production.
In addition, RHIC will further explore exciting new signatures of gluon saturation and non-linear gluon

dynamics. The ratios of forward Drell-Yan and photon-jet yields in p + p and p + A/A + A collisions are clean
probes of nuclear modifications to initial state parton distributions as well as gluon saturation effects. All of
these measurements rely critically on the successful completion of scheduled RHIC operations. Overall, all
data will provide valuable information about evolution effects and, with the projected statistical precision, will
establish the most precise benchmark for future comparisons with the ep data from the EIC.

3.3.8 Cold QCD Program at LHC
The LHC experiments have significantly impacted our understanding of the PDFs in the nucleon and nucleus

from various hard scattering processes, including high energy jet and electroweak boson production in p + p
and p + A collisions, see recent global analyses of the proton and nuclear PDFs [516, 519, 667–670, 878, 879].
These impacts will likely continue with ongoing experimental programs at the LHC with luminosity upgrades.
In addition, future measurements at the LHC will impact cold QCD physics in several different ways. Here we
highlight two examples.

The unique fixed-target SMOG program at LHCb [1321] took p+He, p+Ne, p+Ar, and Pb+Ar data at
√

sNN = 69–110 GeV. These measurements [1322–1325] can constrain nPDFs over a range of nuclei, and in a
different kinematic region than that accessible to other experiments, and provide insights into the charmonium
production mechanism. The recently installed SMOG II upgrade will allow orders of magnitude higher
luminosities and a wider range of possible targets [1326]. The LHCSpin project [1327, 1328] would replace
SMOG II with a transversely polarized target during the LHC Long Shutdown 3 and start taking data in 2029.
The project has the support of the LHCb Collaboration and the LHC machine, and R&D is ongoing at LHC
Interaction Region 3. A polarized gas target cell similar to the HERMES polarized target at HERA as well as an
alternative jet target are under consideration. The project would provide singly polarized proton-proton collisions
at
√

s ≈ 115 GeV, and p↑ + A collisions with a nuclear beam would also be possible.
The ALICE Collaboration at the LHC is proposing an upgrade for LHC Run 4 (2029-32) of a very forward

calorimeter, called FoCal, to study the small-x gluon dynamics of hadrons and nuclei [1214]. The FoCal
consists of a highly-granular Si+W electromagnetic calorimeter followed by a conventional sampling hadronic
calorimeter, covering the pseudo-rapidity interval 3.4 < η < 5.5 over the full azimuth. The FoCal design is
optimized for the measurement of isolated photons at forward rapidity for pT > 2 GeV/c. The FoCal will
measure a suite of theoretically well-motivated observables in p + p and p+Pb collisions that probe the gluon
distribution at small-x (down to approximately 10−6) and low to moderate Q2. These observables include isolated
photon, neutral meson, and jet inclusive production and correlations in hadronic collisions, and the measurement
of vector meson photoproduction in ultra-peripheral collisions. The FoCal scientific program will explore gluon
dynamics and non-linear QCD evolution at the lowest values of Bjorken-x that are accessible at any current or
planned facility world-wide. FoCal measurements, combined with the comprehensive experimental program at
the EIC and other forward measurements at RHIC and the LHC, will enable incisive tests of the universality of
linear and non-linear QCD evolution in hadronic matter over an unprecedented kinematic range.

3.3.9 CEBAF Upgrade Initiatives for Cold QCD
With the physics program at CEBAF for the next decade outlined as above, one could envision the possibility

of CEBAF continuing to operate with a fixed target program at the “luminosity frontier”, up to 1039 cm−2s−1 and
with large acceptance detection systems, presenting complementary capabilities in the era of EIC operations.
One such example is the 3D imaging of the nucleon structure through DDVCS. With a cross section a factor 100
lower than DVCS, DDVCS is not viable at EIC and must be studied at JLab. Possible additions and upgrades to
the CEBAF facility will further enhance such complementarity. In the following, we present two initiatives that
were discussed in the QCD Town Meeting.

Future opportunities with positron beams Development in many hadronic physics topics calls for additional
tools to probe the nucleon structure. In this aspect, the addition of an anti-lepton beam will greatly expand
our arsenal of experimental probes and provide data and information that are otherwise unattainable with a
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lepton beam alone. Most prominently, experimental results on the proton form factors and a full mapping of
the generalized parton distributions of the nucleon pointed towards the importance of positron beams for the
experimental determination of these fundamental quantities of the nucleon structure. Further ideas emerged
about testing the electroweak Standard Model and exploring the dark matter sector. A comprehensive research
effort was then started both in the physics and the technical areas to assess the potential of an experimental
program and to address the possible technological issues of high duty cycle positron beams [1281], as described
below.

Two-Photon Exchange Physics with Positrons Our interpretation of data on the proton electromagnetic form
factor ratio Gp

E/G
p
M is still clouded by the lack of understanding of TPE effects. Investigations of TPE with

other observables have produced new questions: First, the GEp-2γ experiment at JLab looked for evidence of
TPE in the ε-dependence of polarization transfer. While no dependence was found in the form factor ratio, an
unexplainably large and ε-dependent enhancement was found in the longitudinal polarization component [1329].
Second, while observables such as SSA (see Section 3.3) provide information on the imaginary part of TPE, they
do not directly address the proton form factor discrepancy. A highly desired and probably the most efficient way
to study TPE towards a better understanding of the nucleon structure is yet to be provided by high-precision
measurement of the lepton-charge difference in e + p elastic scattering. Such experiments have been carried out
at other facilities than CEBAF, but the beam and detectors (VEPP-2, OLYMPUS) suffered from uncorrelated
systematic uncertainties in the relative e+/e− intensity calibration, either due to lower beam energies or smaller
acceptances. To this end, the addition of a positron beam to CEBAF, along with its unique large-acceptance
detectors already available or under development, will measure the lepton charge difference for all ε points at
once and at high Q2 where TPE is expected to be large, and will likely provide an unambiguous explanation of
the proton form factor discrepancy.

Nucleon Femtography with Positrons An exciting scientific frontier is the 3D exploration of nucleon (and
nuclear) structure, i.e, nucleon femtography. The cleanest reaction to access GPDs is DVCS: γ∗p → γp.
However, DVCS interferes with the Bethe-Heitler (BH) process, where the lepton scatters elastically off the
nucleon and emits a high energy photon before or after the interaction. The cleanest way to separate the
DVCS and BH amplitudes is to compare electron and positron scattering, as the BH amplitude is lepton-charge
even while the DVCS amplitude is lepton-charge odd. This method will isolate not only the DVCS amplitude
contribution to the cross section, but also the interference term between DVCS and BH amplitudes, with the latter
providing direct linear access to DVCS at the amplitude level. In short, the use of both positron and electron
beams provides direct access to the nucleon structure carried in the DVCS amplitude and indisputable access to
the square of the DVCS amplitude, representing a true qualitative shift in the 3D imaging of nucleons and nuclei.

Positron beams at JLab The challenging creation of positrons with a high degree of polarization at JLab relies
on its unique source of polarized γ rays produced by Bremsstrahlung radiation from CEBAF’s polarized electron
beams [1330]. Within this framework, a polarized-electron driven positron injector is currently being designed
and evaluated [1331]. The polarizied electron source needed for such approach is in the range of > 1 mA. While
not routine, such capacity has been demonstrated [1332] and is assumed. Additionally, the approach now focuses
on utilizing the Low Energy Research Facility (LERF, formerly known as the Free-Electron Laser or FEL) as
the site for the new positron beam source. The LERF includes significant existing facilities (cryogenics, low
conductivity water, shielding, electronics bays, radio-frequency penetrations, control room) and can provide
up to 3 superconducting radio-frequency (SRF) cryomodules to support the e− drive beam and e+ acceleration.
The selected positron bunch train passes a momentum selection chicane prior to entering a SRF cryomodule for
acceleration up to 123 MeV and a bunch compression chicane to match CEBAF acceptance. Once the 123 MeV
e+ beam is produced, it is then a matter of transporting it to CEBAF for acceleration. This can be achieved by a
new connector tunnel from the LERF exit to the lower elevation of the CEBAF enclosure, which will allow the
123 MeV e+ beam to be injected at the usual point in front of the north linac for multi-pass acceleration and
beam extraction to any of the four Halls at any of the passes, see Fig. 44. Additionally, the intention is for all
of the CEBAF electro-magnets to have a capability for polarity reversal on the scale of a day, for experiments
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which required both e+ and e− pair-created beams from the LERF source. Given the promise of this approach,
JLab is continuing expanded follow-on studies of a future positron beam source and its acceleration for CEBAF.

Figure 44: A new tunnel and beam line (shown raised) connects the LERF to CEBAF and transports the 123 MeV
e+ beam for injection and acceleration into CEBAF 12 GeV.

Future opportunties with energy doubling of CEBAF Recently, the Cornell Brookhaven Electron Test
Accelerator (CBETA) facility has demonstrated eight-pass recirculation of an electron beam with energy
recovery [1333]. All eight beams – four accelerating passes and four decelerating passes – are recirculated
by single arcs of fixed field alternating gradient (FFA) magnets. This exciting new technology carries the
potential to enable a cost-effective method to double the energy of CEBAF, allowing wider kinematic reach for
nucleon femtography studies. Furthermore, it will enable new scientific opportunities that include: (1) first-time
production of various X and Z states in photon(lepton)-hadron collisions; (2) precision studies of near-threshold
production of higher mass charmonium states χc and ψ′; (3) precision measurements of the radiative decay
width and transition form factor of π0 off an electron for the first time, offering a stringent test of low-energy
QCD. Ongoing, further investigations and simulations will strengthen the science opportunities introduced
here. Meanwhile, technical studies of the implementation of FFA technology at CEBAF are in progress and are
described in more detail below.

CEBAF Energy “Doubling” – Accelerator Concept The recent success of the CBETA project demonstrated the
possibility to extend the energy reach of CEBAF up to 22 GeV within the existing tunnel footprint. Such an
increase can be achieved by increasing the number of recirculations through the accelerating cavities, and by
replacing the highest-energy arcs with FFA arcs, see Fig. 45. The new pair of arcs configured with an FFA lattice
would support simultaneous transport of 6 beam passes with energies spanning a factor of two, each beam pass
with very small transverse orbit offsets due to the small dispersion function.

Transporting high energy beams (10-22 GeV) while staying within the CEBAF footprint calls for special
mitigation of synchrotron radiation effects. One of them is to increase the bend radius at the arc dipoles to
suppress adverse effects of the synchrotron radiation on beam quality, including dilution of the transverse and
longitudinal emittance due to quantum excitations. Further recirculation beyond 22 GeV is limited by large
energy loss due to synchrotron radiation, which depends on energy to the fourth power. Therefore, using FFA to
double CEBAF energy will finally be pushing its energy to a limit set by its footprint.

Connection to accelerator physics Both positron beams and energy doubling will contribute to accelerator
physics development, and connect to possible future needs of the EIC and other high energy physics (HEP) and
NP facilities which will rely on beam recirculation (e.g. LHeC) or FFA technology. Developments of these two
CEBAF upgrades will help to maintain and enhance US leadership in accelerator science and technology.
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Figure 45: Sketch of the CEBAF accelerator with the two highest energy arcs, Arc 9 and Arc A, replaced with a
pair of FFA arcs (green). Figure from [1281].

3.4 Future QCD Studies at Other Facilities

Drell-Yan at Fermilab fixed target The SpinQuest experiment will investigate whether the sea quarks are
orbiting around the center of the nucleon by measuring the Sivers asymmetry with the use of a solid-state target of
polarized protons and deuterons. This measurement provides information on the correlation between the angular
distribution of the dimuons in the Drell-Yan process and the nucleon spin at high xB with a virtuality of Q2 ∼ 10
GeV2. The observation of a nonzero Sivers Asymmetry would be a strong indication of non-zero sea quark
orbital angular momentum. The SpinQuest experiment can also probe the sea quark transversity distribution.
Additionally, a proposal has been submitted to upgrade SpinQuest with a specialized RF-modulated target that
can be used to separate tensor from vector polarized observables of the deuteron, providing access to additional
sea quark and gluon transversity TMDs. The gluon transversity TMD only exists for targets of spin greater or
equal to 1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe
of gluonic degrees of freedom.

HIGS The High Intensity Gamma-Ray Source (HIGS), operated by the Triangle Universities Nuclear Laboratory,
is capable of providing nearly mono-energetic, polarized gamma-ray beams with energies ranging from 1 to
120 MeV. HIGS is the highest flux Compton gamma-ray source ever built and operated. The gamma-ray beam
flux delivered to experiments at 100 MeV is approximately 1 × 107γ/s. The Compton-scattering program at
HIGS, which is carried out by research groups from 13 institutions, is mapping out the energy dependence
of the dynamical scalar electromagnetic polarizabilities of the neutron over photon beam energies from 60 to
120 MeV and extending proton measurements from about 100 to 120 MeV. Free-Electron Laser cavity mirror
R&D is underway to increase the maximum gamma-ray beam energy at HIGS from 120 to 150 MeV to enable
measurements up to the pion production threshold where the electric dipole polarizability of the nucleon is
largest. The work by the HIGS Compton Scattering Collaboration will illuminate differences in the neutron and
proton scalar polarizabilities, providing stringent tests of chiral effective theories and a new prediction of the
electromagnetic contribution of the proton-neutron mass difference [1334]. A program to develop cryogenic
polarized target capability at HIGS will enable measurements of spin-dependent nucleon polarizabilities at
photon beam energies below the photo-pion production threshold. The Compton-scattering data from HIGS are
complementary in both energy and technique to the data measured by the A2 Collaboration at MAMI.

MUSE The Muon Scattering Experiment (MUSE) at the PiM1 beam line of the Paul Scherrer Institute (PSI)
measures scattering of a mixed beam of electrons, muons, and pions from a liquid hydrogen cryotarget [1335,
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1336]. The experiment was initially motivated by the proton radius puzzle, and PSI was chosen for its unique
capability to provide simultaneous low energy electron and muon beams. MUSE features a large-solid-angle,
non-magnetic detector and cryogenic target system, and will test lepton universality through the comparison
of cross sections, form factors, and proton radii extracted from electron and muon scattering. Beams of both
positive and negative polarity leptons will determine two-photon exchange corrections, testing predictions. A
forward-angle calorimeter tests initial-state radiative corrections. The background pions in the beam allow
determination of π-N cross sections of interest to low-energy effective field theories used in the strong QCD
regime. The simultaneous measurement of electron and muon scattering, and the measurement of both charge
states in the same experiment suppresses many systematic uncertainties. MUSE will be the first experiment to
provide elastic muon scattering of sufficient precision to address the puzzle.

MESA The University of Mainz is currently constructing a new electron accelerator (MESA). In 2024, an
electron beam is expected to be generated with MESA for the first time. It will offer ideal conditions in
which scientists will be able to explore the limits of Standard Model physics. Several key experiments are
currently under development. Among them, MAGIX is a multi-purpose spectrometer which allows the precise
measurement of proton form factors at the lowest impulse transfer rates. This will contribute decisively to the
clarification of the existing contradictions in the experimental determination of the proton radius (the so-called
proton radius puzzle) and to dark matter searches.

ULQ2 is a new high-resolution spectrometer facility for low-energy electron scattering at the Research Center
for Electron Photon Science (ELPH) at Tohoku University in Sendai, Japan. The facility has been constructed
and commissioned from 2017-2022 and will provide precision measurements of the proton elastic form factors
at very low momentum transfer, the proton charge, magnetic, and Zemach radii, and of low-energy nuclear
structure.

J-PARC The Japan Proton Accelerator Research Complex, J-PARC, is Japan’s leading accelerator facility,
which has cascaded proton accelerators including the 400-MeV linear accelerator, the 3-GeV rapid cycling
synchrotron (RCS) and the main ring operated at 30 GeV. There are experimental facilities such as the Materials
and Life Science Facility at RCS, and the Neutrino Facility and the Hadron Experimental Facility both at the
main ring. In addition to applied physics research, there are two major basic research activities: (1) Neutrino
Facility Neutrino as well as anti-neutrino beams produced at J-PARC are sent to the Super-Kamiokande located
about 295 km west of J-PARC. The research topics at the Neutrino Facility include QCD-related physics such as
neutrino-nucleus interactions. (2) The Hadron Experimental Facility is a unique experimental complex which
utilizes the secondary beams to perform precision measurements on hyper-nuclear spectroscopy, hyperon-nucleon
scattering, and kaonic nuclei, to name a few. Major physics interests of these programs are hadron interactions,
including hyperon-nucleon interactions, hyperon-hyperon interactions, and kaon-nucleon interactions. Upgrades
to this experiment, which could measure proton generalized parton distributions and pion distribution amplitudes,
are also being discussed.

FAIR FAIR is a European flagship facility [1243, 1244]. This worldwide unique accelerator and experimental
facility will conduct unprecedented forefront research in physics and applied sciences on both a microscopic
and a cosmic scale. While the center of mass energies of heavy-ion beams (

√
sNN = 2.9 − 4.9 GeV) are

designed for the CBM experiment, the 1.5 − 15 GeV/c momentum beam of anti-protons will be generated and
collected in the high energy storage ring before being sent to the experiment PANDA. There are three major
experiments in FAIR designed for fundamental research: (1) The NUSTAR experiment is designed together
with the Super-FRS and storage cooler rings, and will allow discovery measurements in nuclear structure and
nuclear astrophysics; (2) The CBM experiment is a high-energy nuclear collision experiment with high rate
capabilities for determining the location of the QCD critical point, the first-order phase boundary, the equation of
state of nuclear matter at high baryon density and the hypernuclear interactions pertinent to the inner structure of
compact stars; (3) The PANDA experiment, designed at the antiproton storage cooler ring HESR, will provide a
unique research environment for an extensive program in hadron spectroscopy, hadron structure and hadronic
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interactions. In particular, the studies of hadron structure in the relatively large−x region complement the
structure measurement at small-x at the EIC in the coming decades.

BELLE II High luminosity e+e− experiments always played an important and complementary role in the study
of QCD, alongside nucleon scattering experiments. While in the latter a spacelike gauge boson is exchanged
and the nucleon is used as a QCD laboratory, at e+e− machines, the complementary timelike process can be
used to study quarks traversing the vacuum and their subsequent hadronization with a precision that cannot be
reached in hadronic scattering experiments. Belle II [1337] is taking data at SuperKEKB, a second generation
B-factory delivering world record luminosities. Over the next decade, Belle II plans to collect 50 ab−1 integrated
luminosity, about a factor 50 more than Belle. The large Belle II dataset will enable the precise determination
of complex correlations in the hadronization process, which are necessary for a detailed mapping of the QCD
dynamics at play. Therefore, support for a robust QCD program at Belle II is essential to make progress in our
description of hadronization and precision tests of QCD in hadronization at the pace necessary to analyze data
from current and future SIDIS and hadronic scattering programs at JLab, the EIC, and the LHC. Recently, the
community formulated a broad and widely supported program which is documented in a recent whitepaper [1338].
Relevant topics include the spin-orbit correlation in hadronization, measurement of polarized and unpolarized
fragmentation functions, hadronization effects in jets, precision tests of perturbative QCD calculations in jet
and event shape measurements, and constraining the value of αs. A focus of the program is on the modeling
of hadronization in (polarized) Monte Carlo event generators. Belle II data in conjunction with LEP data will
provide the necessary information to test the energy dependence of these models needed for the EIC or the LHC.

AMBER In the context of the physics-beyond-colliders (PBC) initiative at CERN, the COMPASS++/AMBER
(proto-) collaboration proposes to establish a “New QCD facility at the M2 beam line of the CERN SPS" [1339].
The proposed measurements cover a wide range of Q2: from lowest values of Q2, where it is planned to measure
the proton charge radius by elastic muon-proton scattering, to intermediate Q2 to study the spectroscopy of
mesons and baryons by using dedicated meson beams, to high Q2 to study the structure of mesons and baryons
via the Drell-Yan process. The whole project is intended to run over the next 10 to 15 years. AMBER will play
a crucial role as it can uniquely provide pion (kaon) Drell-Yan measurements in the center-of-mass energy region
10− 20 GeV. These measurements are essential for a global effort aimed at pion structure function measurements
(also providing a handle on determination of the so-called “pion flux" for EIC Sullivan process measurements)
and kaon structure function data map.

4 Electron-Ion Collider
The scientific foundation for the EIC has been built for over two decades. Throughout, the EIC initiative

was driven by maintaining U.S. leadership in both nuclear science and accelerator physics. These dual goals
were clear from the outset, starting with the 2002 NSAC LRP [1340] where “R&D over the next three years to
address EIC design issues" was placed at high priority. Support from the community continued with the 2007
LRP [1341], which recommended “the allocation of resources to develop accelerator and detector technology
necessary to lay the foundation for a polarized Electron-Ion Collider" and culminated in the 2015 plan, where the
EIC was identified as the “highest priority for new facility construction following the completion of FRIB" [2].

During this period the science case underpinning these recommendations was continually developed and
documented by the growing EIC community, as illustrated in Fig. 46. A series of workshops hosted by the
Institute for Nuclear Theory laid the foundation for a White Paper titled "Understanding the glue that binds
us all" [1344]. The studies developed for the EIC White Paper [1344], combined with continued progress in
accelerator R&D, served as input to a critical review in 2018 by the NAS. Their final report, An Assessment of
the U.S. Based Electron-Ion Collider Science, concluded that “the EIC science is compelling, fundamental, and
timely." [1345].

Below we will summarize the flagship components of the EIC science case, consisting of understanding
the origin of the proton spin and mass, proton tomography, gluon saturation, cold nuclear phenomena, and
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Figure 46: A chronological display of the publications that document the development of the EIC science case.
From left to right: The 2002 [1340] and 2007 [1341] LRPs, a 2009 report of the EIC Working Group [1342], a
report on the joint 2010 BNL/INT/JLab program on EIC [1343], the 2012 EIC White Paper [1344], the 2013
NSAC Subcommitte Report on Scientific Facilities, the 2015 LRP [2], and the NAS report [1345]. Figure
from [1346].

fundamental symmetries. We will also briefly discuss the EIC project detector that will be built at the 6 o’clock
interaction region by the ePICcollaboration, along with the plans for a second, complementary detector to be
constructed at the 8 o’clock region.

4.1 The EIC Science
Decades of scattering experiments and their theoretical interpretation have produced an intriguing picture of

the proton and neutron. These particles are held inside the atomic nucleus by the strong force, the same force that
generates the dynamic landscape of quarks and gluons that form the substructure of the nucleon. Some quantum
numbers of the nucleon, like its electric charge, are easily reproduced by simply summing the properties of the
three valence quarks. Yet, the quarks contribute only a third of the total nucleon spin and an even smaller fraction
of the total mass. Clearly, many of the fundamental properties of the nucleon must emerge from the gluons, the
carriers of the strong force that confine the quarks inside the nucleon, and from the copious qq̄ pairs that form
the quark sea. Our interest goes beyond reconstructing the fundamental properties of the parent nucleon: our
ultimate goal is understanding the dynamics of the dense partonic environment found in nucleons and nuclei. The
EIC will be an amazingly versatile machine that will allow experiments to map out the spatial and momentum
distributions for quarks and gluons, study how the gluon density evolves with the resolution of the electron probe
and with the momentum fraction x carried by the interacting gluon, and observe how transitions from partonic to
hadronic degrees of freedom are modified in increasingly dense nuclear matter. These key science questions
(and more!) can be summarized by the following lines of inquiry:

• How do the nucleonic properties such as mass and spin emerge from partons and their underlying
interactions?

• How are partons inside the nucleon distributed in both momentum and position space?
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• What happens to the gluon density in nucleons and nuclei at small x? Does it saturate at high energy,
giving rise to gluonic matter with universal properties in all nuclei (and perhaps even in nucleons)?

• How do color-charged quarks and gluons, and jets, interact with a nuclear medium? How do confined
hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions generate
nuclear binding?

• Do signals from beyond-the-standard-model physics manifest in electron-proton/ion collisions? If so,
what can we learn about the nature of these new particles and forces?
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Figure 47: Left: Impact of the projected EIC pseudodata on the spin decomposition of the proton based on the
most recent version of the DSSV14 parametrization [531, 1347, 1348]; Right: EIC impact on the g1 structure
function based on parameterizations with or without the theory-inspired small-x extrapolation [1349] (see text).

In the following, we will highlight the impacts that the EIC will bring to the above fundamental questions of
hadron structure and strong interaction physics.

Proton spin Nucleon spin has played a central role in driving hadron physics for over three decades. The EIC
will have unprecedented impact on our understanding of this physics. With the unique coverage in both x and Q2

(for polarized DIS), along with very high luminosity, the EIC will provide the most powerful constraints on the
quark and gluon helicity contributions to the proton spin yet. The left panel of Fig. 47 depicts the contributions of
the large-x (x ∈ [10−3, 1]) quark and gluon helicities (subtracted out of the proton spin of 1/2) on the horizontal
axis and of the small-x (x ∈ [10−6, 10−3]) quark and gluon helicities on the vertical axis, along with the possible
lines corresponding to different values of the OAM (L) carried by the partons. The EIC data will significantly
shrink the error bars of the quark and gluon helicities. The precision of the polarized structure functions (and
parton helicity distributions) may be further improved by implementing the theoretical predictions for their
behavior at small-x [1350–1355], as shown in the right panel of Fig. 47 which compares the (more conventional)
DGLAP-based predictions for the proton g1 structure function [1347] (in blue) to those based on the small-x
evolution [1349] (in red). Apart from the total quark helicity contribution to the proton spin, the sea quark
polarization will be determined to higher precision through semi-inclusive hadron production in DIS. In addition,
a systematic investigation of various hard exclusive processes will provide information on the partonic orbital
angular momentum contributions to the proton spin [1356, 1357].

Nucleon tomography and the origin of mass The EIC will significantly extend our knowledge of the distribu-
tion of quarks and gluons in nucleons and nuclei, both in position and momentum space. Examples of processes
that can provide information beyond the original 1D Feynman parton picture are illustrated in Fig. 48. On one
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Figure 48: Upper panel: Illustration of the two types of processes that occur in lepton-nucleus collisions: a
semi-inclusive process where a hadron, hadron pair, jet or dijet is measured and the remnant nucleus is destroyed
(left) and an exclusive process where the nucleus remains intact (right). Lower panel: Tomographic images
in slices of x for the quarks and gluons in a nucleus: (transverse) spatial tomography in bT-space provided by
exclusive processes (left); (transverse) momentum tomography in kT-space provided by semi-inclusive processes
(right). Figure from [1346].

hand, in elastic processes (see the right side of the upper panel in Fig. 48), detecting the full final state of the
proton beam provides information about the transverse position of the partons – quarks and gluons – that reside
inside nucleons and nuclei. On the other hand, using a related class of inelastic observables gathered from data
where the scattered electron is measured in tandem with an electro-produced hadron, or a jet, or a pair of hadrons
(see the left side of the upper panel in Fig. 48), the EIC will also measure the transverse motion of partons.
These measurements will enable parton tomography, a series of 2D images of the nucleon, both in transverse
position and momentum space. This is illustrated in the lower panel of Fig. 48, with such snapshots stacked
along the Bjorken-x direction. Starting at large x, in the domain of valence quarks, and proceeding toward lower
x, the regime of sea quarks and gluons, these images will reveal where quarks and gluons are located and how
their momenta are distributed in the transverse plane. The full richness of transverse momentum information is
explored when transverse polarization (with the proton spin direction orthogonal to the direction of motion) is
added. In this case, orbital motion leads to correlations between spin and transverse momentum, generating an
asymmetric transverse momentum distribution, such that the parton tomography provides a series of images of
transverse momentum distributions that are fully 2+1-dimensional.

The tomographic techniques will provide insight into the origin of the proton mass. Studying the processes
of elastic J/ψ and Υ production near threshold at the EIC, we will be able to extract the gravitational form factors
which shed light on the amount of the proton mass carried by the QCD trace anomaly contribution. The EIC will
provide a unique opportunity to better measure the gravitational form factors by providing a lever arm in Q2 for
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J/ψ or (heavier) Υ elastic production processes. Understanding the origin of the proton mass is an important and
fundamental question, related to our understanding of the origin of mass in the visible universe.
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Figure 49: Left: Schematic illustration of the probe resolution, Q2, versus x, indicating regions of non-
perturbative (band at the bottom) and perturbative QCD (everything above the non-perturbative region), including
in the latter, low to high saturated parton density, and the transition region between them [1344]. The saturation
region is shown in yellow. Right: A saturation model prediction of the hadron-hadron correlation function C(∆φ)
to be measured in e+p and e+A collisions at EIC plotted as a function of the azimuthal angle ∆φ: the away
side peak at ∆φ = π decreases as one goes from e+p to e+A due to the increase in the saturation scale with A.
The ranges of transverse momenta (pT ) and longitudinal momentum fractions (zh) of the trigger and associated
hadrons are specified on the plot. Figure from [1346].

Gluon dynamics in a dense medium The gluon and sea quark PDFs in the proton grow rapidly with decreasing
Bjorken-x. The dynamical mechanism responsible for this growth is the splitting of gluons into pairs of gluons
or quark antiquark pairs and the splitting of quarks into quarks and gluons [1358–1362]. The large number of
gluons and sea quarks at low x confined to the transverse area of the proton results in a high parton density. But
will high density keep increasing as we probe lower and lower values of x? Would the physics change in the
high density regime? As was originally conjectured in [886], the growth of the gluon density should saturate
at some small value of x, leading to the novel regime of gluon saturation (see [890, 891, 898, 1363–1366] for
reviews). The new dynamics in the saturation regime are due to gluon mergers: the mergers compensate for the
splittings, leading to saturation of the gluon density. The transition from the splittings-dominated regime to the
saturation regime is described by the nonlinear small-x evolution equations [892, 896, 897, 1367–1373], which
are a manifestation of the nonlinear nature of QCD.

A key feature of gluon saturation is the emergence of a momentum scale Qs, known as the saturation
scale. The scale is predicted by the nonlinear evolution equations [892, 896, 897, 1367–1373] and designates
a transition from the low-density regime (Q > Qs) to the high-density saturated regime (Q < Qs) as indicated
in the left panel of Fig. 49. The saturation scale grows with decreasing x, Q2

s ∼ 1/x0.3. When this scale
significantly exceeds the QCD confinement scale ΛQCD, the dynamics of strongly correlated gluons can be
described by weak coupling QCD methods. The framework that enables such computations is the CGC effective
field theory [890, 891, 898, 1363–1366], see, Sec. 3.1.2. It is expected that the saturation phenomenon grows
with the nuclear mass number A, Q2

s ∝ A1/3 [888, 889, 1374, 1375]; thus, the novel domain of saturated gluon
fields can be accessed especially well in large nuclei. Unambiguously establishing this novel domain of QCD
and its detailed study is one of the most critical goals of the EIC.

Multiple experimental signatures of saturation have been discussed in the literature [1344]. The EIC
program follows a multi-pronged approach taking advantage of the versatility of the EIC facility. Day-one
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measurements include the proton and nuclear structure functions F2 and FL, which are sensitive to saturation
physics. One of the other key signatures concerns the suppression of di-hadron angular correlations in the
process e + Au→ e′ + h1 + h2 + X. The angle between the two hadrons h1 and h2 in the azimuthal plane, ∆φ, is
sensitive to the transverse momentum of gluons and their self-interaction: the mechanism that leads to saturation.
The experimental signature of saturation is a progressive suppression of the away-side (∆φ = π) correlations of
hadrons with increasing atomic number A at a fixed value of x, as demonstrated in the right panel of Fig. 49.
Diffraction and diffractive particle production in e+A scattering is another promising avenue to establish the
existence of saturation and to study the underlying dynamics. Diffraction entails the exchange of a color-neutral
object between the virtual photon and the proton remnant. As a consequence, there is a rapidity gap between the
scattered target and the diffractively produced system. At HERA, these types of diffractive events made up a
large fraction of the total e+p cross section (10–15%). Saturation models predict that at the EIC, more than 20%
of the cross section will be diffractive. In simplified terms (and at leading order), since diffractive cross sections
are proportional to the square of the nuclear gluon distribution, σ ∝ [g(x,Q2)]2, they are very sensitive to the
onset of non-linear dynamics in QCD. An early measurement of coherent diffraction in e+A collisions at the EIC
would provide the first unambiguous evidence of gluon saturation. Further studies at small x that can provide
insight into the spatial and momentum distribution of gluons include coherent and incoherent diffractive vector
meson production, deeply virtual Compton scattering (and their dependence on azimuthal angle between the
produced particle and the electron plane), as well as inclusive and exclusive dijet production [898]. In particular,
access to the gluon Wigner distribution is possible using diffractive dijets [337, 899].

Nuclear modifications of parton distributions High energy electron-nucleus collisions at the EIC will enable
measurements of nuclear modification of the parton distribution functions over a broad and continuous range
in x and Q2. This will lead to the study of the PDF differences between the bound and unbound nucleons
with unprecedented precision. These differences are often quantified via the ratios of the nuclear PDF to the
proton PDF divided by the nuclear mass number A. Nuclear modifications described by such ratio range
from suppression (below unity) in the so-called “shadowing" domain of small-x to enhancement in the “anti-
shadowing" (moderate-x) region and again to suppression in the “EMC" (large-x) regime, as illustrated in the
left panel of Fig. 50. For the most part, these modifications are only phenomenologically modeled.
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Figure 50: Left: The cross section ratioσγ
∗A/(Aσγ

∗p) measures the nuclear modification to the parton distribution
functions (figure from [316]). Right: Relative uncertainty bands for the gluon distributions in gold nuclei at
Q2 = 1.69 GeV2. The blue band is the original EPPS16* fit, the green band incorporates inclusive cross section
pseudodata and the orange band also adds the charm cross section σcharm (figure from [1346]).

Measurements of nuclear structure functions elucidate to what extent a nucleus could be described by a
collection of independent nucleons – a fundamental question about nuclear properties in QCD. The effect of
the EIC data on our knowledge of the nuclear gluon distribution function is shown in the right panel of Fig. 50,
where the relative uncertainties clearly shrink as one includes EIC pseudo-data. As can be seen, the EIC provides
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broad kinematic coverage, mapping the shadowing and anti-shadowing regimes, as well as part of the EMC
regime.

The EIC will also provide novel insights into the physics of SRC in nuclei [1376] and how they relate to the
mechanism by which QCD generates the nuclear force [1377], as well as into their possible connections to the
nPDF EMC effect. Using far-forward tagging techniques, the EIC will probe the structure of nucleons in varying
nuclear states, thereby disentangling the impact of the strong nuclear interaction on the bound nucleon structure.
Such ’spectator tagging’ techniques can be applied in conjunction with all reactions that are sensitive to nucleon
structure, from inclusive DIS, to SIDIS to DVCS/DVMP, and can thus provide unprecedented insight into the
impact of strong nuclear interactions and the dense nucleon medium on the structure of bound nucleons. This
has been demonstrated in numeric simulations for the deuteron [1377, 1378] and 3He [1379]. This extension of
the free-nucleon structure program to bound nucleons via spectator tagging techniques is a novel frontier. It
requires performing high-precision measurements over a wide kinematic phase space [1380–1384].
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Figure 51: Ratio of relative particle production (Nh/Nincl) in e+A over that in e+p as a function of z, the
momentum fraction of the parton carried by the respective hadron. Light pions (left) show the largest nuclear
suppression at the EIC. However, heavy flavor meson ratios (right) have to be measured to differentiate models
of hadronization since they show a substantially different modification in e+A. (Figure is from [1385].)

Hard probes in cold nuclei The EIC will make substantial progress in our understanding of hadron formation,
including inside nuclear matter. Especially, studying hadronization for light and heavy quarks in cold nuclear
matter can unravel some of the mysteries surrounding energy loss in a quark-gluon plasma [1185]. At the EIC,
the large Q2 range will permit measurements in the perturbative regime with enough leverage to determine
nuclear modifications of the fragmentation functions. The high luminosity will permit the multidimensional
binning necessary for separating the many competing mechanisms. The large photon energy (in the nucleon
rest frame), ν ≈ 10 − 1000 GeV, will isolate in-medium parton propagation effects (large ν), and to cleanly
extract color neutralization and hadron formation times (small ν). Studies of particle production for identified
hadron species are required to accomplish these goals (see Fig. 51). The present phenomenological description
of in-medium fragmentation describes the observed attenuation of light hadron production through modification
of splitting functions in the presence of nuclear matter. Jet substructure studies at the EIC will provide direct
experimental input for constraining the evolution of splitting functions in nuclear matter.

Fundamental symmetry physics The high luminosity, polarized lepton and polarized hadron beams, and
kinematic coverage provided by the ePIC detector afford unique opportunities for a variety of electroweak (EW)
and beyond-the-standard model (BSM) physics topics. Among them, precision measurements of parity violating
asymmetries over a wide range of x and Q2, when combined with knowledge of the PDF, can determine the value
of the weak mixing angle sin2 θW at an energy scale between fixed-target and high-energy collider facilities, and
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help narrow down the mass range of possible dark Z bosons (Zd). Additionally, such PVES asymmetries provide
nearly orthogonal constraints to Drell-Yan processes measured at the LHC, on new contact interactions when
analyzed in the framework of the Standard Model Effective Field Theory (SMEFT). The availability of polarized
hadron beams at the EIC will measure new electroweak structure functions, the gγZ

1,5, for the first time. Second,
lepton flavor violation observed in neutrino oscillations implies a similar violation in the charged lepton sector,
charged lepton flavor violation (CLFV). While CLFV due to Standard Model processes are too suppressed to
be observed by current or planned experiments, many BSM scenarios predict much higher rates that could be
detected by the EIC. In particular, electron-to-tau conversion (e + p→ τ + X), mediated by leptoquarks, is one
of the most promising CLFV channels to be studied at the EIC because of its higher luminosity and the exquisite
vertex resolution provided by the ePIC detector. Such limits would potentially surpass limits set by the HERA
experiments and would be sensitive to the difference between scalar and vector leptoquarks. Another opportunity
in e − τ CLFV is via a possible e + A → τ + A + a process, where A is a high-Z ion and a is an Axion-Like
Particle (ALP) [1386]. The polarized beams at the EIC will provide a unique sensitivity to parity violating ALPs.
Lastly, by measuring the charge-current DIS cross section at different electron beam polarizations, it is possible
to set constraints on right-handed W bosons and thus test the chiral structure of the Standard Model.

4.2 The EIC Facility
The EIC will be a new, innovative, large-scale particle accelerator facility capable of colliding high energy

beams of polarized electrons with heavy ions and polarized protons and light ions. It is a joint endeavor between
BNL and JLab that will be built on the current site of RHIC. In December 2019, the EIC was launched as an
official project of the US government when it was granted Critical Decision Zero (CD-0). Soon after, in June
of 2021, the project was awarded CD1 status. Beam operation is currently expected to commence in the early
2030s.

Shown schematically in Fig. 52, the EIC will collide bright, intense counter-circulating beams of electrons
and ions at two possible interactions regions, the Interaction Point (IP) 6 and IP8, at 6 and 8 o’clock position
in Fig. 52, respectively. The DOE has committed to building a general-purpose, large acceptance detector that
is capable of addressing the science case outlined in the NAS report [1345]. In 2020 the EIC Users Group
launched a year-long effort to explore possible detector technologies and codify the detector requirements needed
to address the NAS science case. The results of this study have been collected and published as the EIC Yellow
Report [717]. With the detector requirements defined, BNL and JLab extended a call to the community in March
of 2021 for Collaboration Proposals for the reference detector. A Detector Proposal Advisory Panel (DPAP),
an international committee of detector experts and theorists, was assembled to review the proposals submitted
by the ATHENA, CORE and ECCE proto-collaborations. The outcome of that competitive review process is
the ePIC collaboration, which is in the process of finalizing the technology choices and detector designs for
the detector at IP6, starting from and extending the ECCE proposal as its reference design. Details about the
current ePIC detector design and plans for the second detector at IP8 will be discussed in Sections 4.3 and 4.4,
respectively.

The EIC is being designed to cover a center-of-mass energy range for e+p collisions of 28 GeV ≤
√

s ≤ 140 GeV, which in turn allows for a broad kinematic reach in x and Q2 as shown in Fig. 53. The
diagonal lines in each plot represent lines of constant inelasticity y, which is the ratio of the virtual photon energy
to the electron energy in the target rest frame. The quantities x, y, and Q2 are obtained from measurements of
energies and angles of final state objects, i.e., the scattered electron, the hadronic final state or a combination
of both. The left panel in Fig. 53 shows the kinematic coverage for e+p collisions while the right panel shows
the coverage for e+A collisions. The EIC will open doors for precision measurement with polarized beams to
entirely new regions in both x and Q2 while providing critical overlap with present and past experiments. Access
to the low-x region is particularly important as this is the gluon-dominated regime where saturation effects are
expected to emerge.
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Figure 52: Planned EIC accelerator. Figure from [1346].

In order to address the crucial scientific questions
discussed in the previous sections, the EIC must
provide:

• Highly polarized electron (∼70%) and proton
(∼70%) beams;

• Ion beams from deuterons to heavy nuclei
such as gold, lead, or uranium;

• Variable e+p center-of-mass energies from
28−100 GeV, upgradable to 28−140 GeV;

• High collision electron-nucleon luminosity
1033−1034 cm−2 s−1;

• The possibility of more than one interaction
region.
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Figure 53: Left: The x-Q2 range covered by the EIC (yellow) in comparison with past and existing polarized
e/µ+p experiments at CERN, DESY, JLab and SLAC, and p+p experiments at RHIC. Right: The x-Q2 range for
e+A collisions for ions heavier than iron (yellow) compared to existing world data. Figure from [1346].

The accelerator The EIC must collide electrons with protons and other atomic nuclei (ions) over a range of
energies. There must be enough collisions for the experiment to gather adequate data to elucidate or settle the
known physics questions, and other questions that may emerge, in a reasonable time. A collider’s ability to
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squeeze many particles of two beams into a tiny volume where they collide defines its luminosity. The luminosity
ultimately required of the EIC is comparable to those of the highest performing colliders built to date, such as
the LHC at CERN and the B-meson factories at SLAC and KEK. Furthermore, given the crucial role of spin,
there must be the capability to polarize both the electron and the proton, neutron or light beams. That is to say,
the spins of the individual particles in each beam must be made to line up with each other, overcoming their
natural tendency toward randomization.

To achieve these goals, a host of techniques in accelerator physics and technology must be brought to bear.
Only a few are mentioned here. State-of-the-art SRF cavities will accelerate high-intensity beams efficiently.
Further specialized RF "crab" cavities will rotate the beams as they collide to optimize their overlap. Elaborate
interaction region designs must squeeze two very different beams simultaneously into tiny spot sizes using
advanced superconducting magnet designs. The hadron beams must be compressed in volume by sophisticated
new “beam cooling” techniques that involve subtle interactions with ancillary electron beams. Polarized beams
require polarized particle sources, special magnets, and a further level of mastery of beam physics to preserve
the polarization through the acceleration process to the collisions. Polarized colliding stored beams have been
achieved before only at HERA (polarized positrons or electrons on unpolarized protons) and at RHIC (both
colliding proton beams polarized).

EIC accelerator requirements push the current technology and their realization requires significant research
and development. Indeed, an important element of the scientific justification for a U.S. electron-ion facility
is that it drives advances in accelerator science and technology, which in turn will benefit other fields of
accelerator-based science and society. The accelerator physics and technology advances required for an EIC will,
importantly, have the potential to extend the capabilities of many particle accelerators built for other purposes,
from medicine through materials science to elementary particle physics. Construction and future operations of an
EIC including an appropriate program of dedicated accelerator test experiments would sustain and develop this
precious national asset and help the United States to maintain a leading role in international accelerator-based
science.

4.3 The ePIC Detector
The ePIC detector is a state-of-the-art experimental instrument currently being designed and constructed by

a multi-institutional international collaboration including over 600 scientists. To enable the full EIC physics
program the ePIC detector needs to offer complete kinematic coverage for the detection of particles emitted in
central (|η| . 3.7), far-forward (η & 3.7) and far-backward (η . −3.7) directions, where backward and forward
refers to the electron and hadron beam directions respectively and the forward acceptance is required to extend
down to 10σ of the beam width away from its central line. The detected particles should be identified and
their momentum measured with high precision, over an extensive energy range, ∼ 0.1 – 50 GeV [717]. These
requirements will ensure all major physics processes: neutral-current and charged-current DIS, SIDIS, and
exclusive processes, can be detected, including associated spectator nuclear fragments where relevant. Special
attention was also given to evaluating detector requirements for measurements of processes involving jets, jet
substructure, and heavy-flavor hadrons, such as precise vertex resolution, combined precision timing and position
measurement, and precision calorimetry.

Meeting these stringent requirements is a formidable task that is further challenged by the asymmetric
nature of EIC collisions and the need to have a non-zero crossing angle between the electron and hadron beams.
Therefore, the ePIC detector requires complete and detailed integration with the EIC interaction point and
accelerator beams, a major technical challenge that has been successfully addressed by the EIC community over
the last several years.

The current layout of the ePIC central detector is shown in Fig. 54. The central detector is based around
a 1.7 T superconducting solenoid with the same dimensions as the BaBar solenoid used by the sPHENIX
experiment. It is divided into a barrel region (|η| . 1.5) and forward and backward endcaps (1.5 . |η| . 3.7).
All central detector regions follow an overall similar particle detection concept, starting from high-precision
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vertexing and tracking measurements, continuing with Cherenkov and TOF based PID measurements, followed
by electromagnetic and, finally, hadronic calorimetry. The tracking system will be based on a set of silicon

Figure 54: Schematic drawing of the ePIC central detector showcasing its high-precision vertexing and tracking
detectors, Cerenkov and TOF based PID detectors and electromagnetic and hadronic calorimeters. Figure
from [1346].

detectors, using the ITS-2, ITS-3, and AC-LGAD technologies, supplemented by large radii MPGD detectors
using µRWELL and µMegas technologies. The Cerenkov-based PID uses a high-performance detector of
internally reflected Cherenkov light (DIRC) in the barrel, and a dual gas-aerogel RICH and an aerogel-based
RICH in the forward and backward endcaps respectively. TOF information for low-momentum PID will be
provided by AC-LGAD detectors in the barrel and forward endcap, providing both high-precision tracking
and timing information, and in the backward endcap by the LAPPD sensors that will be used to read out the
RICH detector. EM calorimetry will be based on PbWO4 crystals in the backward endcap, tungsten SciFi in
the forward endcap, and either scintillating-glass crystals or an imaging calorimeter in the barrel. hadronic
calorimetry in the barrel will be done by reusing the iron scintillator calorimeter recently built for the sPHENIX
experiment, and using a longitudinally segmented iron scintillator and tungsten scintillator sandwich in the
forward endcap. The need for a hadronic calorimeter in the backward region is still being investigated and at
present an un-instrumented iron scintillator sandwich calorimeter is planed to placed to return the field and allow
for a future addition of backward hadron calorimetry.

In addition to the detector suite for the primary interaction region, the ePIC detector design also includes the
far-forward and the far-backward spectrometers that provide beam monitoring, among other functions, that ensure
the EIC scientific program can be realized. The far-backward region includes a precision luminosity monitor
and two stations of low-Q2 taggers, while the far-forward region includes a ZDC, Roman pots, off-momentum
trackers, and a B0 tracker.These detectors use the beam steering magnets themselves as the spectrometer magnet,
making their design extremely complex and requiring close integration with the accelerator design.

In addition to the various detector components, a central and novel feature of ePIC is its ’triggerless’
readout, enabling continuously recording (streaming) and storing all interaction data for off-line analysis. The
development of such cutting edge readout system poses a significant challenge that requires the development of
advanced zero-suppression and fast hardware-enabled AI algorithms for effective background filtering.
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4.4 Detector II
A key deliverable of the EIC Project is an accelerator design that can accommodate a second interaction

region and detector. The scope of the EIC project includes one detector (the ePICdetector). At the same time, it
is recognized by all stakeholders that a second, complementary, detector is essential to fully exploit the science
potential of the EIC. Historically, projects of similar scientific impact and scope were designed to include two or
more complementary detectors and the importance of this model has been demonstrated time and again. Multiple
detectors will expand scientific opportunities, draw a more vivid and complete picture of the science, provide
independent confirmation for discovery measurements and mitigate potential risks when entering uncharted
territory, especially for systematics-limited measurements as the EIC expects to perform. Two detectors will
expand the opportunities for a new generation of scientists and encourage technological development and
innovation by fostering a natural and healthy competition between the two collaborations.

The timeline for establishing a second experiment at the EIC is crucial. The two experiments should be
separated by no more than a few years for scientific validation to be productive. In turn, this delayed time frame
can be used to explore new and complementary detector technologies that may not have been utilized by the
ePIC detector. The EIC community has emphasized the need for at least two detectors for many years and the
Detector Proposal Advisory Panel (DPAP) echoed this support stating in their report that “A strong case for two
complementary general-purpose detectors has been made during the panel review" and that “There is significant
support in the community and from the panel for a second general-purpose detector system to be installed in
IR8 when resources are available." The DPAP also concluded that that “it is essential to have two detectors
with a sufficient degree of complementarity in layout and detector technologies." In particular, the panel made a
convincing case for the significant gain in physics reach achievable with a secondary focus:

• increased acceptance in the invariant momentum transfer t of the scattered proton in e+p collisions, which
directly translates into an increased resolution power for imaging partons in the transverse plane;

• significantly improved abilities to detect nuclear breakup in exclusive and diffractive scattering on light
and heavy nuclei. The distinction between coherent and incoherent scattering is essential for the physics
interpretation of these processes;

• prospects for a program of low-background γ gamma spectroscopy with rare isotopes in the beam
fragments.

The panel further pointed out that “the additional R&D required for a second detector will bring additional
benefits in developing technologies and in training the associated workforce." The DOE Office of Nuclear
Physics has followed up on this and restarted a generic EIC-related detector R&D program. The EIC Users
Group is in the process of refining the science case for a second detector and is actively working to engage
additional national and international resources for this effort.

4.5 EIC-Theory Alliance
As described above, the EIC will be a unique and versatile facility that will enable us to understand some of

the most compelling questions in the physics of the strong nuclear force. To fully exploit the potential of the
EIC, a focused theory effort will be required. The need for such an effort was already pointed out in the NAS
report [1345]. The best way to achieve this goal is the creation of a national EIC Theory Alliance.

The goal of the EIC Theory Alliance is to provide support and stewardship of the theory effort in EIC
physics broadly defined for the life span of the facility. It will promote EIC theory and contribute to workforce
development through: i) support of graduate students, ii) EIC Theory Fellow positions, iii) bridge positions at
universities, and iv) short and long term visitor programs to enhance collaboration between various groups. In
addition, the alliance will organize topical schools and workshops.

The EIC Theory Alliance will be a decentralized organization open to participation by anyone in the
community who is interested in EIC physics, i.e., it will be a membership organization, where members elect
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an executive board which effectively runs the alliance. The executive board will determine the major scientific
thrusts of the theory alliance, make decisions regarding at which universities bridge faculty positions will be
created, and serve as a search committee for EIC related positions. Furthermore, the executive board will
coordinate the organization of workshops and schools related to the research activities of the alliance. In
addition, the EIC Theory Alliance will seek and nurture international cooperation to maximally leverage the
available funding. The structure of the EIC Theory Alliance to some extent will resemble the structure of topical
collaborations in nuclear theory. However, unlike topical collaborations, it will have a significantly longer life
span and involve a large international component.

5 Connections to Other Sub-fields of Nuclear
All QCD facilities, including CEBAF, RHIC, and the LHC, cover physics programs beyond the subjects of

cold and hot QCD. The strong overlap between QCD physics and other nuclear science disciplines has always
been a unique feature at these facilities. In previous sections, we have discussed, for example, the nuclear EMC
effects and its close relation to nucleon-nucleon short range correlations which play an important role in the
nuclear structure studies and are a crucial part of the physics program at FRIB. In the following, we highlight
additional connections between QCD studies and other nuclear science fields and beyond.

5.1 Probing Novel Regimes of QED in Ultra-Peripheral Heavy-Ion Collisions
The lowest order QED calculation [313, 1221, 1387–1389] of lepton pair production via photon-photon

fusion in the equivalent photon approximation [313, 1221, 1388, 1389] as input for the photon flux can be used to
describe the unpolarized cross section in UPCs measured by RHIC and LHC [1217, 1390–1400]. This is true also
when making selections on various topologies of forward neutron production using ZDCs, which are wellknown
to select on the internuclear impact parameter [317, 1401–1403]. Coherent photons are highly linearly polarized
with the polarization vector aligned along its transverse momentum direction. A sizable cos 4φ azimuthal
asymmetry induced by linearly polarized coherent photons was observed in a STAR measurement [1393] in
agreement with theoretical predictions [1404, 1405]. With future high statistics data with larger acceptance in
UPCs at RHIC and LHC, the phase space of photon collisions in transverse momentum, rapidity and momentum-
space-spin correlations can be explored in extreme regions of QED fields [1216, 1404, 1406]. More importantly,
these measurements provide a precision calibration necessary for photons as sources of the photonuclear
processes [332, 1407] (see Sec. 2.1.4) and the initial electromagnetic field, necessary for studies of emerging
QCD phenomena (see Sec. 2.1.7).

5.2 Connection to Nuclear Astrophysics
Astrophysical observations have entered a new era with measurements of neutron star radii and tidal

deformabilities that can be used to infer the neutron star equation of state at large baryon densities and vanishing
temperature. In 2017 the first gravitational waves from merging binary neutron stars were measured as well as
the electromagnetic component of the merger [1408]. Since then other potential mergers of neutron stars (either
with other neutron stars or black holes) have been detected. The first radius measurement of a two-solar-mass
neutron star [1409–1411] was done in NASA’s NICER mission. Both hot and cold QCD programs cover physics
research that are closely related to the EOS of dense QCD matter. The upcoming years are expected to produce
many other observations, providing unprecedented constraints on the dense matter equation of state.

5.2.1 Heavy Ion Collisions to Explore the QCD EOS
Low-energy heavy-ion collisions probe densities similar to neutron stars, albeit at much higher temperatures.

However, significant theoretical development is needed to reliably make direct connections between neutron
stars and heavy-ion collisions (see e.g. [60, 1080, 1147]), including further development of heavy-ion collisions
simulations. One must also keep in mind that heavy-ion collision and neutron stars probe different regions of
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the phase diagram: while heavy-ion collisions are governed by the EOS of nearly symmetric nuclear matter,
neutron stars are extremely neutron rich environments with very few charged hadrons. Thus, one must have a
strong understanding of how properties of QCD are affected when comparing symmetric to asymmetric matter.
Fortunately, measurements of mirror nuclei from the future CBM experiment at FAIR or FRIB [1412] could
provide crucial insight into subtle differences between heavy-ion collisions and neutron stars.

The description of neutron star mergers can also benefit greatly from theoretical advances in relativistic
viscous hydrodynamics, which were driven mostly by applications in heavy ion collisions. In such mergers,
rapid changes in T and µB [1413, 1414] can drive fluid elements out of chemical equilibrium, and weakly
interacting processes will relax them back to equilibrium. If the corresponding timescale is of the order of
milliseconds [1413, 1415], this may influence the hydrodynamic evolution and leave imprints in the post-merger
gravitational wave emission [1416–1418]. In this case, the detection of post-merger gravitational waves (using
upcoming 3G detectors) could provide information not only about the dense matter EOS but also about its novel
transport properties. Furthermore, under certain conditions [1419, 1420], the chemical imbalance associated
with neutrino processes admits a viscous hydrodynamic description in terms of equations of motion similar to
those investigated in heavy-ion collisions [1046, 1421] (though now the transport coefficients are determined by
weak-interaction processes). This synergy can foster new collaborations between heavy-ion physicists, nuclear
astrophysicists, gravitation wave scientists, and numerical relativity experts (see, e.g, [1416, 1418]).
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Figure 55: Left: 208Pb weak and baryon densities from the combined PREX datasets, with uncertainties shaded.
The charge density is also shown [1422]. Right: Difference between the charge and weak form factors of
48Ca (CREX) versus that of 208Pb (PREX-2) at their respective momentum transfers. The blue (red) data point
shows the PREX-2 (CREX) measurements. The ellipses are joint PREX-2 and CREX 67% and 90% probability
contours. The gray circles (magenta diamonds) are a range of relativistic (non-relativistic) density functional
models [1423].

5.2.2 Neutron Skin Thickness in Heavy Nuclei and Connection to Neutron Stars
Nuclei are known to be very dense with nucleons packed against each other. They could in fact be considered

a terrestrial laboratory to study the behavior of extremely dense nuclear matter contained within celestial objects
of the same nature, e.g., neutron stars. In neutron-rich nuclei, neutrons are expected to be distributed over a larger
volume than protons, forming a neutron “skin" around the nucleus. The thickness of this skin is sensitive to the
equation of state for nuclear matter, and specifically to the density dependence of the symmetry energy near
saturation density. A direct measure of the neutron skin thickness has long been an elusive goal. The situation
drastically changed with the use of observables involving more than electromagnetic interactions. Because
the weak charge of the neutron is much larger than that of the proton, PVES provides a highly interpretable,
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model-independent probe of neutron densities.
Results from two such high-precision measurements at JLab have become available very recently: the

PREX-2 experiment on 208Pb found its neutron skin thickness to be 0.28 ± 0.07 fm [1422], while the CREX
experiment found the neutron skin of 48Ca to be 0.121± 0.036 fm [1423]. Here, the large 208Pb nucleus provides
a close approximation to uniform nuclear matter and the data imply an interior nuclear baryon density of
0.148 ± 0.038 fm−3, while the 48Ca system is more sensitive to details of nuclear structure and therefore presents
additional tests of models. Both PREX-2 and CREX provide a direct, model independent measurement of the
difference between the weak and electromagnetic form factors. The difference found by PREX-2 is relatively
large, in contrast with the CREX result that shows smaller-than-expected differences. Nuclear model predictions
tend to correlate between the two systems, thus the differing results present an important empirical challenge
to precise modeling of nuclear structure. An experiment called MREX is being planned to measure the 208Pb
neutron radius to 0.03 fm precision at the new MESA facility in Mainz, Germany, which will help clarify the
intriguing observation from PREX-2 of a thick neutron skin.

5.2.3 Cosmic-rays and Nuclear Physics
QCD studies have played an important role in one of the most compelling mysteries in astrophysics:

the nature (nuclear composition) and origin of ultra-high energy cosmic rays (UHECR). Incident UHECR
produce energetic air showers that develop as they propagate through the atmosphere. The relationship between
observables, such as the size of the electromagnetic shower reaching the ground and the number of muons and
the energy and species of the incident particle depends critically on the hadronic physics that is used to model
the air shower; different simulation codes predict rather different results [1424]. An improved understanding
of air shower development is critical in view of several outstanding mysteries in the field: the long-standing
unresolved tension between Southern hemisphere observations by the Auger observatory [1425] and Northern
hemisphere measurements by the Telescope Array (TA) [1426], and the apparent excess of muons in high-energy
air showers seen by multiple experiments [1427–1429].

Although fixed target RHIC and LHC data have been helpful in tuning Monte Carlo models, there are
still significant uncertainties [1430], and predictions are sensitive to parton behavior at low-x [1431]. Better
LHC data is needed in the far-forward region [1214, 1432, 1433], which is most important for determining the
particle fluxes reaching the ground. This data will also be helpful in better estimating the atmospheric neutrino
flux, including the prompt flux, where there are still significant uncertainties [1434]. Meanwhile, cosmic-rays
offer us the opportunity to make nuclear-physics measurements that are not possible with current or planned
accelerators [1435, 1436]. Future radio-detection experiments should extend the cross-section measurements to
energies above 1019 eV, and thereby probe parton distributions at x values that are lower than are accessible at
the LHC [1437], extending searches for saturation into a new regime.

5.3 Electron-nucleus Experiments and Connections to Neutrino Oscillation Measurements
The precision of neutrino oscillation experiments depends on the ability to reconstruct the incident neutrino

flux as a function of their energy at the detector position. As neutrinos are detected following their interaction
with atomic nuclei in the detector, this extraction strongly relies on the precise understanding of neutrino-
nucleus interaction cross sections. Current oscillation experiments report significant systematic uncertainties
due to these interaction models [1438–1441] and simulations show that energy reconstruction errors can lead
to significant biases in extracting the CP violating phase in neutrino oscillations at DUNE [1442]. The e4ν
Collaboration exploits the similarity between electron- and neutrino-nucleus interactions to test and constrain
these models. Utilizing the well known energy of the JLab beam and the large acceptance of the CLAS detector,
e4ν performed wide phase-space scattering measurements on relevant nuclear targets and used their data to
test energy reconstruction methods and constrain the interaction models for neutrino experiments. In a recent
publication [1443] they showed a quantitative disagreement (see Fig. 56) between electron scattering data and
interaction models utilizing quasi-elastic-like topology, which is considered to be the simplest interaction one
can measure and is used in many oscillations analyses. This disagreement grows with energy and nuclear mass
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number, as well as at large transverse momentum. Complementary measurements were also done by the JLab
E12-14-012 experiment [1444–1449] to improve our understanding of the spectral function of Argon, the target
nucleus used by most neutrino detectors in DUNE Refs. [1450–1453].

The e4ν collaboration recently collected data with the CLAS12 detector at various energies and on different
targets including argon. The collaboration expects to analyze various interaction channels and use its results to
obtain an electron-tuned set of energy-reconstruction models for use by the neutrino oscillations community.
In parallel, work is underway to unify the neutrino and electron modes in the widely applied GENIE event
generators [1454] to consistently analyze electron and neutrino data for reliable tests of the standard model in
long baseline neutrino oscillation measurements.

Figure 56: Quasi-elastic reconstructed energy.
The 1.159 GeV C(e, e′)0π cross section plotted as a
function of the reconstructed energy EQE for data
(black points), and widely used interaction mod-
els such as GENIE SuSAv2 (solid black curve)
and GENIE G2018 (dotted black curve). The col-
ored lines show the contributions of different pro-
cesses to the GENIE SuSAv2 cross section: quasi-
elastic (QE), Meson Exchange Current (MEC), res-
onances (RES) and DIS. It can be seen that the
reconstructed energy distributions based on these
models agree only qualitatively with data and the
difference can be up to 25%. Figure from [1443].

5.4 Connections to Physics Beyond the Standard Model Searches
5.4.1 Searches for BSM Physics in Ultra-Peripheral Heavy-Ion Collisions

Ultra-peripheral heavy ion collisions provide a unique environment to look for BSM physics in regions
of phase space not easily accessible to p+p collisions [1231, 1455, 1456]. As discussed in Sec. 5.1, in these
collisions the nuclei do not get closer than twice the nuclear radius to each other and interact only via QED.
This interaction is very strong (for QED) because the nuclei have both been stripped of their electrons. The two
photons can interact via light-by-light scattering [1457], a process which was first measured in these collisions
at the LHC [1458, 1459]. The two-photon final-state in these collisions could be increased by BSM physics.
Measurements of the cross section for these collisions [1459, 1460] are consistent with expectations from the
Standard Model. The limits on new physics from this process, such as the existence of ALPs, are expected to
become stronger with the increased LHC luminosity in Runs 3 and 4 [1134, 1455]. The anomalous magnetic
moment of the τ lepton (gτ-2) is also sensitive to new physics beyond the Standard Model [1461] (as for
gµ − 2 [1462]) and can be extracted from the γγ → τ+τ− process in UPCs. Early measurements from ATLAS
and CMS [1397, 1463], along with feasibility studies from ALICE and LHCb [1464], have already demonstrated
a sensitivity competitive with that from previous LEP measurements [1465].

5.4.2 Parity-Violating Electron Scattering and EW/BSM Physics
While CEBAF is considered primarily a QCD facility, the development of high-precision PVES has enabled

it to make significant impact on low- and medium-energy tests of the neutral-current (NC) EW sector of the
Standard Model and BSM physics. We describe a variety of such PVES measurements below.

The proton weak charge While electric charges of the proton and the neutron are well known static properties
of the nucleon, their counterpart the weak charge, predicted by the theory of electroweak unification, is not as
well constrained. The recent QWeak experiment [1466, 1467] at JLab measured the proton weak charge Qp

W
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for the first time using the parity-violating asymmetry between right- and left-handed electron elastic scattering
off the proton. It was determined to be Qp

w = 0.0719 ± 0.0045, which leads to a determination of the weak
mixing angle sin2 θW = 0.2383 ± 0.0011, both in good agreement with the Standard Model. When combined
with atomic parity violation experiments [1468–1470], the Qweak experiment provides the best constraint on the
NC electron-quark coupling geq

AV to date. The P2 experiment planned at Mainz will improve the uncertainty over
Qweak and will determine Qp

W to ±1.83% and sin2 θW to ±0.00033 [1471]. The chiral counterpart of geq
AV , the

electron-quark vector-axial coupling geq
VA, was measured by the JLab 6 GeV PVDIS experiment [1472, 1473]

and is one central focus of the planned SoLID program at JLab, see next paragraph.

Parity violation DIS and effective electron-quark couplings The aforementioned Qweak experiment provided
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Figure 57: Left: experimental determination of the weak mixing angle sin2 θW including expected results from
MOLLER and SoLID PVDIS. Data points for the Tevatron and the LHC are shifted horizontally for clarity.
Right: Current experimental knowledge of the couplings geq

VA (vertical axis), with the projected SoLID result
shown by the cyan ellipse. Also shown are expected results from P2 at Mainz (purple and pink vertical bands)
and the combined projection using SoLID, P2, and all existing world data (magenta ellipse), centered at the
current best fit values. See [1282] for details.

the first result on the proton weak charge [1467], and the 6 GeV PVDIS experiment provided the first evidence
that the electron-quark vector-axial effective coupling geq

VA is non-zero at the 2σ level [1472, 1473]. The future of
JLab Hall A will be comprised of two experiments that push the EW/BSM physics further, see Fig. 57. The first
is the MOLLER experiment, that will measure the electron weak charge and determine the weak mixing angle
with a precision comparable to high energy collider experiments. The second is the SoLID PVDIS experiment
with a deuterium target, which is the only planned experiment that will improve the precision on geq

VA by an order
of magnitude over the 6 GeV JLab result. A new Beam Dump Experiment (BDX) is planned that would run
parasitically with MOLLER (or other high luminosity experiments), which will search for dark sector particles
produced in the JLab Hall A beam dump.

6 Workforce Development and DEI
The success of the long-term future of our science relies on the ability to attract and retain a diverse and

talented workforce, as well as a durable pipeline for sustaining it. As articulated in LRP15, “A highly qualified
workforce trained in nuclear science is the most important element in realizing the scientific goals of the field.”.
Despite the previous recommendations for the field to grow, it has stagnated in size at best. This is partially
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reflected in Fig. 58 (a), which shows the numbers of NP graduate students and staff (permanent and temporary)
present in American institutions. As can be seen, these numbers have approximately flattened since the 2010s. A
similar number is the number of NP PhDs awarded in American institutions, Fig. 58 (b), which shows a similar
plateau.

Permanent Staff 

The case for education [update]
University & Labs

Temporary Staff 

Graduate students

Number of PhDs granted in Nuclear Physics

Pandemic

( )a

( )b

Figure 58: DOE - FY2020 Nuclear Physics Workforce Survey of USA stats [link]

The reason why the field has stagnated is unclear. Before discussing possible recommendations, it is useful
to categorize and enumerate the factors that may be working against the growth of the field. These can generally
be categorized as internal and external to the field. As one may expect, the community may have a better
handle addressing the internal ones, but we must also be aware of external ones such that we can work towards
countering these factors.

Among the key internal factors that may be making the field stagnant is its environment. Ultimately, a
community is comprised of a set of individuals, each behaving as they see fit. As a result, the only tool at our
disposal is defining guidelines that the community as a whole deems to represent acceptable behavior, in other
words, Codes of Conduct. Within external factors, there are those that we can effectively address and those that
are practically out of our control. These include talent recruitment and retention, an education and outreach. In
the following, we will discuss these factors that led to the recommendations listed in Sec. 1. We emphasize that
all these factors are intertwined.

6.1 Code of Conduct, Diversity, Equity, and Inclusion
A Code of Conduct generally includes scientists’ duty to behave ethically, respectfully, and inclusively

toward one another and to reveal potential conflicts of interest. Together with Diversity, Equity, and Inclusion
(DEI) committees, Codes of Conduct have become ubiquitous in the past few years. This is due to the regrettable
fact that equity in science is still a mirage, as shown by results obtained from survey after survey. A considerable
effort has been devoted by various groups to developing community guidelines, see, for example, Ref. [1474].
To make this work, these guidelines have to be accompanied by accountability and enforcement processes.
Their beneficial impact for the current community and the positive investment for future generations of physics
make these a critical part of our culture going forward.

To this end, one of the key recommendations reached within the QCD Town Meeting pertains to Codes of
Conducts. In particular, it has been well recognized that part of recruiting and maintaining a diverse workforce
requires treating all community members with respect and dignity. The QCD community supports the recent
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initiatives by the APS and DNP, such as the DNP Allies Program and Code of Conduct for APS Meetings, to
develop community-wide standards of conduct and recommends that host laboratories and user facilities require
the establishment and/or adoption of enforceable conduct standards by all of the experimental and theoretical
collaborations they support. The enforcement of such standards is the combined responsibility of all laboratories,
theoretical and experimental collaborations, conference organizers, and individual investigators supported by the
NP research program.

Meanwhile, DEI is a crucial component in workforce development:

• Establishing a diverse workforce: This includes actively recruiting and hiring individuals from different
backgrounds, experiences, and perspectives.

• Promoting an inclusive culture: This includes creating an environment where all individuals feel respected,
valued, and heard. This can be done through training, open communication, and active engagement with
diverse groups.

• Providing opportunities for professional development and advancement: This includes providing equal
opportunities for all members in the QCD community at all career stages to learn, grow, and advance in
their careers, regardless of their background.

• Holding leadership accountable and providing support and resources for underrepresented groups, such
as employee resource groups, mentoring programs, and counseling services.

• Continuously evaluating and improving: This includes regularly evaluating all institutional and organi-
zational DEI efforts, providing feedback, and urging them to make adjustments and improvements as
necessary.

It is important to note that promoting DEI is not a one-time event or a short-term project, it is a continuous
process that requires commitment and effort from all members of the QCD community.

6.2 Talent Retention for a Diverse Workforce
The QCD community has experienced and benefitted from the bridge/joint faculty positions in the past,

including those associated with BNL/RIKEN center (joint faculty with universities) and JLab bridge positions
(with nearby universities). In addition, recent establishment of the DOE topical theoretical collaborations have
opened up quite a few bridge faculty positions, see, Sec. 3.1.5, for the successful stories. At the QCD Town
Meeting, it was strongly suggested by the community to expand such programs of bridge positions, fellowships,
traineeships, and other incentives, to continue recruiting and retaining a more diverse group of junior faculty
and staff at universities and national laboratories. In particular, that recruitment and retention of certain under-
represented groups in NP need to be emphasized. The DEI principle discussed above should play a central role
in these programs.

The imbalance of representation in NP almost certainly points to a pipeline issue. The QCD community has a
consensus to support the development and expansion of programs that enable participation in research by students
from under-represented communities at national labs and/or research universities, including extended support
for researchers from minority-serving and non-PhD granting institutions (MSI). Supporting under-represented
communities is essential in realizing DEI. This is in line with two newly established funding opportunities by the
U.S. DOE Office of Science: Reaching a New Energy Sciences Workforce (RENEW) initiative and Funding
for the Accelerated, Inclusive Research (FAIR) initiative to support research at MSIs and emerging research
institutions.

Great opportunity is also on the horizon, with the planned construction of the EIC. We envision a nationwide
(distributed) “EIC Center of Excellence for Science and Diverse Workforce Development” that combines the
discovery science, building and supporting research at MSIs, and developing a diverse and talented workforce
for the field and beyond. Specifically, the Center will establish joint faculty positions between US national
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laboratories and MSIs, support undergraduate and graduate student fellowships, and postdoctoral fellowships
focusing on students from MSIs and early-career researchers from all underrepresented groups. This Center will
offer a concrete platform and mechanism to support and develop research at MSIs and develop a diverse STEM
workforce in partnership with MSIs in a sustainable way. Additional collaborations with other minority serving
professional societies will be crucial for success as well.

6.3 Education and Outreach
Among the other external factors that are affecting the field, the first is the “enrollment cliff”, the shrinking

of college population as a result of the Great Recession. The enrollment drop was further accelerated in year
2020 by the Covid-19 pandemic. As the number of college students shrinks, the number of faculty tracks will
inevitably decrease. Such decrease in faculty tracks could be countered by enhancing the number of available
career opportunities in the field, as described in the previous section. Specifically, prestigious fellowships as well
as joint and bridge positions will encourage universities to invest more in physics.

Another external factor that we can have an impact on is the perception that society has of physics in general.
A main issue that the field of physics encounters in the US is the fact that most high school recommend students
to take Biology, Chemistry, and then Physics, in this order, which results in students not taking Physics until
the 11th grade. At that point, the more ambitious students have likely zeroed in their career path. This ordering
of courses is partly due to the rigorous mathematical requirements for physics, and partly due to physics being
interpreted as the hardest science because of the problem solving skills that it requires. The reasoning that one
should take the hardest science the latest could be inverted, as the earlier and the longer students learn, the
easier it becomes to master the critical thinking skill so important to physics education. Short of restructuring
the American educational system, as a community we can remedy this obstacle by pushing early-education
outreach to local middle and high schools, by encouraging high schoolers to take physics as soon as they finish
Algebra II and to take more advanced courses in subsequent years, and by providing enrollment opportunities for
introductory physics courses at nearby universities.

One more issue that the pre-college education system faces is the lack of high quality training in physics
education. Among high schoolers who actually took physics courses, some did not have a positive experience
because of the teaching quality, making physics an even less desired career path. Some high school physics
courses stayed with the “plug and chuck" approach, which does not expose students to the essence of physics
that differentiates it from other subjects. As a scientific community, we can partly remedy this issue by offering
summer training programs for high school teachers such that they can master modern pedagogy and a deep
understanding of the beauty of physics, who will in turn instill an interest and passion for physics in their students.
Similar argument can be made for the teaching quality of college introductory (“gateway") physics courses, as
student experience in such courses directly determines whether they would consider physics to be a helpful
subject or a viable career.

Finally, there is the public interpretation of what “nuclear physics" refers to. For the general public, the
term “nuclear" is tied to nuclear reactors, nuclear engineering, and weapons development. It is important that
we provide the public an opportunity to understand that modern nuclear physics is the study of matter at the
most fundamental level, and that the technology developed in such research would benefit society, e.g. medical
imaging and radiotherapy. In this aspect, holding open houses and public lecture series would be essential, and
quite practical to do at national facilities, research labs, and university departments.

7 Computing
7.1 Software and Algorithm Development, Including AI/ML

Modern NP includes a broad research program at a varied range of collaborative scales, from a few collabo-
rators up to large experiments at scales comparable to those typical of HEP research [1475]. Consequently, there
is a wide range of scales in the accompanying software efforts, from small pragmatic approaches to substantial
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organized software and computing activities. The trend for increased software and computational needs is well
established [2] and will continue [1476, 1477]. The NP community is conscientiously moving towards the next
generation of data processing and analysis workflows that will maximize the science output [1478]. Programs
at NP facilities that include JLab, BNL, and the EIC in particular [717, 1344, 1345], will continue to drive
computational advances.

AI and ML have become important tools in NP theory, simulation, and data analysis [1479]. It is anticipated
that their role will continue to grow over the coming years. Organizational efforts are being made to develop
best practices and common toolkits for AI/ML technology, including for the EIC [1480]. Large focused efforts
such as SciDAC [835] and CSSI [1481], as well as the establishment of AI Institutes [1482], should receive
continued support. Integrating the technologies and techniques developed within these efforts into larger software
ecosystems will require some effort. Particularly integration into mixed heterogeneous computing environments
will be a particular challenge, requiring support for career paths with multi-domain expertise over the coming
decades. In the following, we provide two detailed examples where AI/ML has already made an impact on NP
research as well as a glimpse into its possible future development.

7.1.1 AI/ML in Data Analysis and Experimental Design
AI/ML has shown great promise, relative to traditional approaches, in the analysis of the large complex

data sets provided by NP experiments. For example: analysis of charged particle tracks [1483], reconstruction
and identification of electromagnetic showers in calorimeters [1484], jet tagging [1486? ], particle identifica-
tion [1487], and event-level reconstruction of kinematic observables [1475]. ML has been used recently in
the unfolding of H1 data [1488, 1489] as well as for fast reconstruction algorithms [1490]. Simulation has
also benefited through the use of generative models [1491]. Finally, uncertainty quantification [1492, 1493],
robustness and explainability [1494] are of particular importance to experimental NP, with unique requirements
not being addressed by industry.

AI/ML is also being used to assist in experimental design [1495, 1496]. This can help to improve the
efficiency of experiments, and has the potential to reduce the cost and time required to carry out the experiment.
Modern electronics in streaming readout DAQ systems [1497, 1498] makes it possible to incorporate high-level
AI algorithms directly in the DAQ-analysis pipeline. This will lead to better data quality control and shorter
analysis cycles. Autonomous control in detectors [1499] will lead to faster calibration and alignment of detectors
which will eventually realize self-driven experiments.

7.1.2 AI/ML Application in Accelerator Science
In addition to NP and QCD research, AI/ML has wide application in other closely related areas. In only

the last five years, the application of AI/ML to accelerator facilities has grown exponentially. A representative
sampling of the research is given in Refs. [1500–1514]. Applications include improved optimization for
beam tuning, surrogate models to reduce simulation run times, novel anomaly detection schemes, prognostics,
and automation. However, we are still far from realizing the full potential of AI/ML. Present conventional
instrumentation, computing architectures and control systems were not designed to support collection of "ML-
ready" data from thousands of instruments in km-scale accelerators. For instance, the increasing need to move
large amounts of data around quickly may stress current networks. A recent solicitation for SBIR proposals
describes the current situation [1515]. Next-generation facilities will require the entire data flow cycle – including
infrastructure, data taking, handling, storage and access – to be revisited.

7.2 High-Performance and High-Throughput Computing and High-Capacity Data Systems
The NP experimental program will see increasing detector complexity as well as experiments with higher

interaction rates than are common today. During the next two decades, two activities will be drivers for computing
requirements: simulation and data processing. Simulation is necessary for hardware systems, such as accelerators
and detectors, as well as science data. Data processing includes data acquisition, calibration, reconstruction, and
analysis activities.
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Simulation is well suited to be distributed as workflows across computational facilities, particularly High-
Throughput Computing (HTC) facilities. Integration of heterogeneous hardware and AI/ML into simulation
frameworks such as GEANT4 is already underway. For example, AI/ML has been successfully used to guide
EIC detector design [1496]. These are activities where investment should continue.

The large data sets expected for NP research will require high-capacity data systems and data management
tools. Despite large projected data rates and detector complexity, it is anticipated that providing the compute
cycles to process data from the experimental program will not be significantly more challenging than it is today.
Processor performance per dollar is expected to increase, as is the use of technologies such as heterogeneous
hardware and AI/ML. Continued investment in R&D and deployment of advanced scientific computing technolo-
gies will help contain computing cost even as data set sizes grow. Instead, the main challenges for distribution of
large data sets across facilities are data transport, workflow management, and data management. The FAIR Data
Principles – Findable, Accessible, Interoperable, and Reusable – must be followed to ensure that the data are in
place when the computing resources are available. Increased investment in accessibility is needed. Additional
challenges exist in cyber-security policies, which at present are not aligned, and federated access for login
or service access is a patchwork. DOE is currently considering the development of an Integrated Research
Infrastructure with the goal of eliminating many of these challenges. Participation by the NP community will
ensure that its needs are considered.

7.3 Workforce Development and Retention in Computing and AI/ML
An increased AI/ML workforce is needed to apply these techniques to NP over the coming decades. Such

an expanded workforce is needed enterprise-wide, across the DOE, not just in NP. However, development and
retention of a diverse, multi-disciplinary workforce in computing and AI/ML face their own unique challenges. A
recent Secretary of Energy Advisory Board (SEAB) report accurately describes the current environment [1516],
pointing out the extraordinary difficulty for national labs to compete with the private sector in attracting AI/ML
talent. A more sustainable strategy would be to provide training for domain experts who have a desire to
add AI/ML proficiency to their repertoire of skills. Conferences, workshops (such as AI for NP [1517] or
AI4EIC [1518]), schools [1519], hackathons [1520, 1521] and other educational/training activities demonstrate
the interest from the community. At the same time, effort must be made to incorporate domain experts from
Data Science where possible. The careful, systematic analysis of NP data with a strong emphasis on accurate
uncertainty quantification also has the potential for NP to feedback to the AI/ML best practices in the field of
data Science.

8 Nuclear Data
Nuclear data are required for detector development and simulations of detector performance. One of the

most crucial aspects of the design of physics experiments as well as in accelerator development and medical
applications is the transport and interactions of particles in a material, be it a detector for physics applications
or the human body for medical applications. The design of any experiment relies on factors such as material
budget, how much material is required for each detector component; energy loss (stopping power), how far
a particle will travel before it is stopped in a given material; energy and position resolution; and radiation
tolerances. Once a detector is built and being placed in operation, further simulations are necessary to understand
the systematic uncertainties on the data including effects on particle tracking such as multiple scattering in the
material, affecting the momentum resolution, energy loss, and particle conversion. These transport models are
also needed to determine the detector efficiency.

In high energy experiments, the code packages most commonly used are Geant4 [1522] and FLUKA [1523].
For example, the data used in Geant4 for photon evaporation, radioactive decay, and nuclide properties are taken
directly from the Evaluated Nuclear Structure Data File (ENSDF) [1524], maintained at the National Nuclear
Data Center at BNL [1525]. Neutron cross sections and final states are based on nuclear data libraries such as
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JEFF-3.3 [1526] and ENDF/B-VII.1 [1527] while the TENDL library [1528] is used for interactions of incident
protons with matter. The SAID database is used for proton, neutron and pion inelastic, elastic and and charge
exchange reaction cross sections for interactions with nucleons below 3 GeV [1529]. Nuclear shell effects are
based on the liquid drop model of the nucleus, including ground state deformations. Nuclear data are also
required for the nuclear density profiles, photoelectric interactions, impact ionization, and optical reflectance,
see Ref. [1522] for more references and details.

Nuclear data have played a direct role in data analysis by the ALICE Collaboration [1530]. The collaboration
was able to make the first determination of the 3He (anti 3He) absorption cross section in matter by its interactions
in different components of the detector made up of different materials with different average nuclear mass values.
This result has cosmological implications for 3He production in the galaxy by cosmic ray interactions and dark
matter annihilation [1530].

Recently, it has been suggested that a scan of collision species at colliders could complement low energy
nuclear structure studies [303]. In particular, the ground state deformations of nuclei plays an important role
in the initial conditions of the quark-gluon plasma, leading to very different predictions of the transverse flow
patterns for collisions of nuclei with the same mass number but different nuclear shapes, as was shown for
collisions of cylindrically-shaped 96Ru +96 Ru compared to those of more irregularly-shaped 96Zr +96 Zr [303].
This is similar to the motivation for the earlier U + U run at RHIC: collisions of strongly deformed 238U nuclei
could lead to very different initial densities and temperatures depending on whether the collisions were tip-to-tip
or side-on-side [1531].

Nuclear data also play an important role in applications. Space exploration is one such application where
high energy nuclear data in particular are critical, primarily due to the harmful effects of the space radiation
environment. The wide range of energies, up to the TeV scale, and species, 1 < Z < 28, of galactic cosmic
rays (GCRs) [1532] make it challenging to determine all their potential effects on spacecraft and astronauts.
While the Earth’s atmosphere has a protective effect, cosmic ray showers reach the ground all over the Earth
and, in fact, have been studied using collider detectors. In particular, muons from cosmic rays pass all the way
through these detectors, producing tracks perpendicular to those from beam-beam collisions and are present
even when the beam is not on, see Refs. [1533–1536]. The ALICE detector at the LHC includes the dedicated
cosmic ray detector ACORDE [1537], used in analysis of Ref. [1536]. Collisions of GCRs with nuclei in the
Earth’s atmosphere or a spacecraft in orbit can generate showers of particles, including pions, muons, neutrinos,
electrons, and photons as well as protons and neutrons.

The penetrating power of the initial GCRs and the secondaries generated by their interaction with matter, can
have a serious impact on the safety and viability of space exploration. The 1% of GCR primaries heavier than He
nuclei can be especially serious because the damage they inflict scales as Z2. The secondary particles generated
from GCR interactions with spacecraft material [1538] such as aluminum, polyethylene, and composites can
harm astronauts and disrupt or disable electronic systems. The spacecraft shielding designed to reduce the GCR
flux is also a target that can increase the secondary flux. Because of the wide variety of possible shielding
materials and thicknesses, modeling is essential to determine the sensitivity of the secondaries (both in flux and
composition) to different shielding configurations, as well as to determine the subsequent harmful impact of
those secondaries on electronic systems [1539] and humans [1540].

Understanding the effects of the highest energy cosmic rays requires high energy (GeV range) nuclear data
and modeling. However, there are no measurements for incident projectile energies greater than 3 GeV/nucleon.
There is a possibility to fill part of these critical gaps in nuclear data employing fixed-target collisions at RHIC.
A proposal [1541] was recently made to bombard C, Al, and Fe targets with C, Al, and Fe ions at energies from 5
to 50 GeV, and measure the produced secondaries using the STAR detector. This measurement, however, would
have to be completed before RHIC is shut down and EIC construction has begun.

Due to the lack of data at the appropriate energies, simulations of space radiation effects have large
uncertainties. The space research community has generally relied on phenomenological nuclear reaction models
such as the Double Differential Fragmentation model (DDFRG) [1542]. Many of the models rely on abrasion-
ablation models [1543, 1544] or semi-empirical parameterizations, see Ref. [1545]. Researchers modeling these
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interactions could benefit from codes developed to study data from RHIC. The use of hadronic cascade models
such as the UrQMD code [394], which was shown to be able to predict proton and deuteron yields from the
BNL Alternating Gradient Synchrotron studies of 15 GeV protons on Be and Au targets [1546, 1547], could
significantly advance simulations of collisions relevant for space exploration. For further information about
nuclear data needs for space applications, see Refs. [1548, 1549].
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 16:00 Lattice QCD for RHIC and LHC PETRECZKY, Peter

Cold QCD Parallel I - Stata Center, 32-123 (14:20 - 16:20)
-Conveners: Ian Cloet

time title presenter

 14:20 Open questions in cold QCD JI, Xiangdong

 14:40 Nucleon Spin Structure from global analysis VOGELSANG, Werner

 15:00 Nucleon Spin Structure at Low-x KOVCHEGOV, Yuri

 15:20 3D Structure of Hadrons probed with Electrons and Positrons MUNOZ CAMACHO, Carlos

 15:40 TMD: Theory and Measurements KANG, Zhongbo

 16:00 The High Intensity Gamma Source HOWELL, Calvin

Coffee Break - Stata Center, 32-123 (16:20 - 16:50)

Hot QCD Parallel II - Stata Center, 32-155 (16:50 - 18:30)
-Conveners: Wei Li

time title presenter

 16:50 CMS and ATLAS HI Physics at LHC Run 3+4 and Beyond LEE, Yen-Jie

 17:20 ALICE + ALICE 3 / other experiments beyond Run 4 TIMMINS, Anthony

 17:50 Heavy flavor in small systems/forward @ LHC DURHAM, Matt

 18:05 Jets & Heavy flavors: From HICs to EIC VITEV, Ivan

Cold QCD Parallel II - Stata Center, 32-123 (16:50 - 18:30)
-Conveners: Or Hen

time title presenter

 16:50 Parton Distributions from Global Analysis SATO, Nobuo

 17:10 Precision Physics with SOLID and Moller SOUDER, Paul

 17:30 Probes for the Origin of Hadron Mass JOOSTEN, Sylvester

 17:50 The Drell–Yan Program at FNAL KELLER, Dustin

 18:10 Saturation from RHIC and Future EIC CHU, Xiaoxuan

Coffee Break - Stata Center, 32-123 (18:30 - 19:00)

Open Mic - Stata Center, 32-123 (19:00 - 20:36)
-Conveners: Or Hen

time title presenter

 19:00 How Important is QCD for the Nuclear Chart? GRIESSHAMMER, Harald

 19:04 Polarized Ion Beams beyond Helium-3 for EIC PENG, Chao

 19:08 Double Deeply Virtual Compton Scattering with SoLID spectrometer at
Jefferson Laboratory

CAMSONNE, Alexandre

 19:12 Vector meson-proton scattering lengths from omega to upsilon STRAKOVSKY, Igor

 19:16 K-long beam experiment at JLab STRAKOVSKY, Igor
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 19:20 Opportunities for precision QCD physics in hadronization at Belle II VOSSEN, Anselm

 19:24 Community agreements NATTRASS, Christine

 19:28 Engaging minorities in Nuclear Physics DA SILVA, Cesar

 19:32 Results from the BNL-MSI Nuclear Physics Traineeship Program CHIU, Mickey

 19:36 Visualization of the Subatomic World MILNER, Richard
ENT, Rolf

 19:40 Input from the JLab Users Organization to the LRP process MUNOZ CAMACHO, Carlos

 19:54 A Better Angle on Hadron Transverse Momentum Distributions at the EIC MICHEL, Johannes

 19:58 On the Importance of hadronic interaction physics program at EIC Era LIU, Ming

 20:02 Physics Opportunities with a Second EIC Detector HYDE, Charles

 20:06 Studying QCD with UPCs at the LHC TAPIA TAKAKI, Daniel

 20:10 MUSE: The MUon Scattering Experiment CLINE, Ethan

 20:14 A US-based MicroPattern Gaseous Detection Center CYNTHIA KEPPEL (FOR
KONDO GNANVO)

 20:18 ALICE FoCal upgrade NOVITZKY, Norbert

 20:22 Inter-American Network of Networks of QCD challenges TAPIA TAKAKI, Daniel

 20:24 Gluon saturation search at Bjorken-x<1e-4 in LHC LUIZ DA SILVA, Cesar
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Saturday, 24 September 2022

Cold QCD Parallel III - Stata Center, 32-123 (08:30 - 10:10)
-Conveners: David Lawrence

time title presenter

 08:30 Hadron Spectroscopy Theory DUDEK, Jozef

 08:50 Hadron Spectroscopy Measurements STEVENS , Justin

 09:10 A High Luminosity Upgrade for CLAS12 STEPANYAN, Stepan

 09:30 Advances in Lattice QCD ZHAO, Yong

 09:50 Quantum Information Science for QCD Research DAVOUDI, Zohreh

Hot QCD Parallel III - Stata Center, 32-155 (08:30 - 10:10)
-Conveners: Bjoern Schenke

time title presenter

 08:30 Future facility for high mu_B physics XU, Nu

 08:50 Theory overview of dense QCD matter RATTI, Claudia

 09:10 Initial State of HICs from UPCs and the role of EIC TU, Zhoudunming (Kong)

 09:30 Opportunities in small systems and connection to nuclear structure JIA, Jiangyong

 09:50 Bayesian Analysis in Heavy ion Physics CHEN, Yi

Coffee Break - Stata Center, 32-123 (10:10 - 10:40)

Cold QCD Parallel IV - Stata Center, 32-123 (10:40 - 11:40)
-Conveners: Or Hen

time title presenter

 10:40 The JLab Hall C Program KINNEY, Ed

 11:00 Two-Photon Exchange Measurements with Positron beams SCHMIDT, Axel

 11:20 QCD in Nuclei and Cold Nuclear Matter WEINSTEIN, Larry

Hot QCD Parallel IV - Stata Center, 32-155 (10:40 - 11:20)
-Conveners: Ramona Vogt

time title presenter

 10:40 fixed target @ STAR for space radiation CEBRA, Daniel

 11:00 Nuclear Data and Its Relation to QCD BROWN, David

Hot QCD Open Mic - Stata Center, 32-155 (11:20 - 12:20)
-Conveners: Ramona Vogt

time title presenter

 11:20 Deciphering Exotic Hadron Structures with Heavy Ion Collisions LIAO, Jinfeng

 11:24 Relativistic Fluid Dynamics: From Heavy-Ions to Neutron Star Mergers NORONHA, Jorge

 11:28 New phenomena for cool, dense QCD PISARSKI, Rob

 11:32 Modular Event Generators FRIES, Rainer
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 11:36 Jets as mult-scale probes of QCD matter REED, Rosi

 11:40 Hadronic transport is needed for studying the dense nuclear matter equation of
state

SORENSEN, Agnieszka

 11:44 Equity and inclusion at major conferences NATTRASS, Christine

 11:48 We should all use Rivet NATTRASS, Christine

 11:52 Simulation of heavy ion collisions with Trajectum NIJS, Govert

 11:56 Novel Spin Transport in Hot Dense QCD Fluid LIAO, Jinfeng

 12:00 The need for more p+A running at RHIC - Discovery of subatomic smoke rings LISA, Mike

 12:04 Flavor dependent hadronization studies at the LHC BELLWIED, Rene

 12:08 In-medium jet acoplanarity and intra-jet broadening in the QGP NIHAR, Sahoo

 12:12 Discovery of the Breit-Wheeler Process and its Application to Nuclear Charge
and Mass Radii Measurements

BRANDENBURG, Daniel

 12:16 A TeV Muon-Ion Collider at BNL - the ultimate QCD frontier and novel
accelerator technology initiatives

ACOSTA, Darin

Cold QCD Open Mic - Stata Center, 32-123 (11:40 - 12:20)
-Conveners: Or Hen

time title presenter

 11:40 Exploring GPDs using Timelike Compton Scattering with SoLID at Jefferson
Lab

ZHAO, Zhiwen

 11:44 Generalized Polarizabilities of the Proton PAOLONE, Michael

 11:48 Can quark and gluon angular momentum and mass distributions be observed? LIUTI, Simonetta

 11:52 Light Meson Structure TANJA, Horn

 11:56 The Neutral Particle Spectrometer Science Program in Hall C as JLab TANJA, Horn

 12:00 Low-Energy Compton Scattering: A Poster Child for Theory-Experiment
Synergy and Relevance

GRIESSHAMMER, Harald

 12:04 Amplitude analyses and light hadron spectroscopy RODAS, Arkaitz

 12:08 The calorimetric electron scattering method : towards high precision
measurement of the proton structure, hidden sector search and more

DUTTA, Dipangkar

 12:12 Insight into Emergence of Hadron Mass from the Studies of Nucleon
Resonance Electroexcitation

MOKEEV, Victor

 12:16 Polarized EMC Effect in the Neutron with New Superconducting Detectors ARMSTRONG, Whitney

Lunch (supplied by MIT) - Stata Center, 32-123 (12:20 - 13:50)

Plenary III - Stata Center, 32-123 (13:50 - 15:40)
-Conveners: Xiaochao Zheng

time title presenter

 13:50 Cold QCD at JLab and RHIC: Theory Advances QIU, Jianwei

 14:20 Ultra-peripheral Collisions Measurements KLEIN, Spencer

 14:45 Probing Cold QCD at RHIC ASCHENAUER, Elke-Caroline

 15:10 The Jefferson Lab 12 GeV Program NAPOLITANO, Jim

 2022 Town Hall Meeting on Hot & Cold QCD / Programme Saturday, 24 September 2022

108



3;<<,,(=",%>(2(+.%.%(3,4.,"'(*)25)*(6598D1(2(5E851:

1#")2+3.4A(2(+.%.%(3,4.,"'(*)25)*(65E851(2(57851:

'(%)*")"+,-.GH%"+).6$I")8"

!"#$ !"!%$ &'$($)!$'

* Vb-V+ 7%$3!'4)*A3?!!$'")5*?!*!P$*<)!$)("!K*I'4)!"$'*`"!P*A0/<> ;7c<B8<9*c$")a7NN")$

* Vb-.J U/?Q*M&5'?N$*&$'(&$3!"F$( Y7OO7/9*1K)!P"?*\=P"?^

* V:-++ O'4Q$(*4@*6"5P*=$#&$'?!M'$*[1> O7R7O7/<=AB9*>$))"(

* V:-D+ 6"5P*=$#&$'?!M'$*[1>*=P$4'K 2B8W9*d")a8"?)

3;<<,,(=",%>(2(+.%.%(3,4.,"'(*)25)*(657851(2(578D1:

1#")2+3.A(2(+.%.%(3,4.,"'(*)25)*(6578D1(2(5F8*1:

'(%)*")"+,-.5))".67$8#",

!"#$ !"!%$ &'$($)!$'

* V,-D+ O'4Q$(*4@*6"5P*>$)("!K*[1> >08W9*d")

* VS-+J 6"5P*>$)("!K*[1>*=P$4'K 80R086Ba60A=/7R9

U?3LM$%K)

L-,4(M#GA@GG#;4(2(+.%.%(3,4.,"'(*)25)*(65F8*1(2()18*1:

'.1+",")="+-.64(LCM6N.5))"

!"#""!$%&'!()**!+,,-.'/!%'!(%-!0!1%*2!314!5!67%/7)88, >)-B72);<!"A!>,?-,8@,7!"#""

+@4$%&'()9(+,-.,/0,"()1))

1#")2+3.A4(2(+.%.%(3,4.,"'(*)25)*(6178*1(2(1F8)1:

'(%)*")"+,-.9"):.;<2)

!"#$ !"!%$ &'$($)!$'

* +,-.+ 8M3%$?'*OPK("3(*7NM3?!"4)*?)N*0M!'$?3P _R<17809*R?M%

* +,-JJ <)!$'($3!"4)(*4@*[1>*?)N*8M3%$?'*>?!? C0W=9*R?#4)?

K;C4(N%HH(M#GA@GG#;4(2(+.%.%(3,4.,"'(*)25)*(61F8)1(2(51811:

3;<<,,(=",%>(2(+.%.%(3,4.,"'(*)25)*(651811(2(518*1:

K;C4(N%HH(M#GA@GG#;4(2(+.%.%(3,4.,"'(*)25)*(6518*1(2(5)811:

I,,.#4O(G@//%"&(2(+.%.%(3,4.,"'(*)25)*(65)811(2(5)8*1:

!"#""!$%&'!()**!+,,-.'/!%'!(%-!0!1%*2!314!5!67%/7)88, >B'2);<!"C!>,?-,8@,7!"#""

109



B References
References

[1] 2022 Town Hall Meeting on Hot and Cold QCD. URL: https://indico.mit.edu/event/538/.

[2] Ani Aprahamian et al. Reaching for the horizon: The 2015 long range plan for nuclear science. 10 2015.

[3] Paul Sorensen. Elliptic Flow: A Study of Space-Momentum Correlations In Relativistic Nuclear
Collisions, pages 323–374. 2010. arXiv:0905.0174, doi:10.1142/9789814293297_0006.

[4] Chun Shen and Ulrich Heinz. The road to precision: Extraction of the specific shear viscosity of
the quark-gluon plasma. Nucl. Phys. News, 25(2):6–11, 2015. arXiv:1507.01558, doi:10.1080/
10619127.2015.1006502.

[5] Jaroslav Adam et al. Anisotropic flow of charged particles in Pb-Pb collisions at
√

sNN = 5.02 TeV. Phys.
Rev. Lett., 116(13):132302, 2016. arXiv:1602.01119, doi:10.1103/PhysRevLett.116.132302.

[6] A. M. Sirunyan et al. Azimuthal anisotropy of charged particles with transverse momentum up to 100
GeV/ c in PbPb collisions at

√
sNN=5.02 TeV. Phys. Lett. B, 776:195–216, 2018. arXiv:1702.00630,

doi:10.1016/j.physletb.2017.11.041.

[7] S. Acharya et al. Anisotropic flow in Xe-Xe collisions at
√

sNN = 5.44 TeV. Phys. Lett. B, 784:82–95,
2018. arXiv:1805.01832, doi:10.1016/j.physletb.2018.06.059.

[8] Morad Aaboud et al. Measurement of the azimuthal anisotropy of charged particles produced in
√sNN = 5.02 TeV Pb+Pb collisions with the ATLAS detector. Eur. Phys. J. C, 78(12):997, 2018.
arXiv:1808.03951, doi:10.1140/epjc/s10052-018-6468-7.

[9] C. Aidala et al. Creation of quark–gluon plasma droplets with three distinct geometries. Nature Phys.,
15(3):214–220, 2019. arXiv:1805.02973, doi:10.1038/s41567-018-0360-0.

[10] Albert M Sirunyan et al. Charged-particle angular correlations in XeXe collisions at √sNN = 5.44 TeV.
Phys. Rev. C, 100(4):044902, 2019. arXiv:1901.07997, doi:10.1103/PhysRevC.100.044902.

[11] Georges Aad et al. Measurement of the azimuthal anisotropy of charged-particle production in Xe + Xe
collisions at

√
sNN = 5.44 TeV with the ATLAS detector. Phys. Rev. C, 101(2):024906, 2020. arXiv:

1911.04812, doi:10.1103/PhysRevC.101.024906.

[12] Jaroslav Adam et al. Azimuthal Harmonics in Small and Large Collision Systems at RHIC Top
Energies. Phys. Rev. Lett., 122(17):172301, 2019. arXiv:1901.08155, doi:10.1103/PhysRevLett.
122.172301.

[13] Mohamed Abdallah et al. Collision-System and Beam-Energy Dependence of Anisotropic Flow Fluc-
tuations. Phys. Rev. Lett., 129(25):252301, 2022. arXiv:2201.10365, doi:10.1103/PhysRevLett.
129.252301.

[14] The ALICE experiment – A journey through QCD. 11 2022. arXiv:2211.04384.

[15] S. Acharya et al. Anisotropic flow of identified particles in Pb-Pb collisions at
√

sNN = 5.02 TeV. JHEP,
09:006, 2018. arXiv:1805.04390, doi:10.1007/JHEP09(2018)006.

[16] Mohamed Abdallah et al. Centrality and transverse momentum dependence of higher-order flow
harmonics of identified hadrons in Au+Au collisions at

√
sNN = 200 GeV. Phys. Rev. C, 105(6):064911,

2022. arXiv:2203.07204, doi:10.1103/PhysRevC.105.064911.

110

https://indico.mit.edu/event/538/
http://arxiv.org/abs/0905.0174
https://doi.org/10.1142/9789814293297_0006
http://arxiv.org/abs/1507.01558
https://doi.org/10.1080/10619127.2015.1006502
https://doi.org/10.1080/10619127.2015.1006502
http://arxiv.org/abs/1602.01119
https://doi.org/10.1103/PhysRevLett.116.132302
http://arxiv.org/abs/1702.00630
https://doi.org/10.1016/j.physletb.2017.11.041
http://arxiv.org/abs/1805.01832
https://doi.org/10.1016/j.physletb.2018.06.059
http://arxiv.org/abs/1808.03951
https://doi.org/10.1140/epjc/s10052-018-6468-7
http://arxiv.org/abs/1805.02973
https://doi.org/10.1038/s41567-018-0360-0
http://arxiv.org/abs/1901.07997
https://doi.org/10.1103/PhysRevC.100.044902
http://arxiv.org/abs/1911.04812
http://arxiv.org/abs/1911.04812
https://doi.org/10.1103/PhysRevC.101.024906
http://arxiv.org/abs/1901.08155
https://doi.org/10.1103/PhysRevLett.122.172301
https://doi.org/10.1103/PhysRevLett.122.172301
http://arxiv.org/abs/2201.10365
https://doi.org/10.1103/PhysRevLett.129.252301
https://doi.org/10.1103/PhysRevLett.129.252301
http://arxiv.org/abs/2211.04384
http://arxiv.org/abs/1805.04390
https://doi.org/10.1007/JHEP09(2018)006
http://arxiv.org/abs/2203.07204
https://doi.org/10.1103/PhysRevC.105.064911


[17] Strange hadron collectivity in pPb and PbPb collisions. 4 2022. arXiv:2205.00080.

[18] Georges Aad et al. Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at
√

sNN = 2.76 TeV with the ATLAS detector. Eur. Phys. J. C, 74(11):3157, 2014. arXiv:1408.4342,
doi:10.1140/epjc/s10052-014-3157-z.

[19] Betty Bezverkhny Abelev et al. Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions
at the CERN Large Hadron Collider. Phys. Rev. C, 90(5):054901, 2014. arXiv:1406.2474, doi:
10.1103/PhysRevC.90.054901.

[20] Serguei Chatrchyan et al. Multiplicity and Transverse Momentum Dependence of Two- and Four-Particle
Correlations in pPb and PbPb Collisions. Phys. Lett. B, 724:213–240, 2013. arXiv:1305.0609,
doi:10.1016/j.physletb.2013.06.028.

[21] N. M. Abdelwahab et al. Isolation of Flow and Nonflow Correlations by Two- and Four-Particle
Cumulant Measurements of Azimuthal Harmonics in √sNN = 200 GeV Au+Au Collisions. Phys. Lett.
B, 745:40–47, 2015. arXiv:1409.2043, doi:10.1016/j.physletb.2015.04.033.

[22] L. Adamczyk et al. Azimuthal anisotropy in U+U and Au+Au collisions at RHIC. Phys. Rev. Lett.,
115(22):222301, 2015. arXiv:1505.07812, doi:10.1103/PhysRevLett.115.222301.

[23] Morad Aaboud et al. Measurement of long-range multiparticle azimuthal correlations with the subevent
cumulant method in pp and p + Pb collisions with the ATLAS detector at the CERN Large Hadron
Collider. Phys. Rev. C, 97(2):024904, 2018. arXiv:1708.03559, doi:10.1103/PhysRevC.97.
024904.

[24] Albert M Sirunyan et al. Non-Gaussian elliptic-flow fluctuations in PbPb collisions at
√

sNN = 5.02 TeV.
Phys. Lett. B, 789:643–665, 2019. arXiv:1711.05594, doi:10.1016/j.physletb.2018.11.063.

[25] Shreyasi Acharya et al. Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations
in pp, p-Pb, Xe-Xe, and Pb-Pb Collisions at the LHC. Phys. Rev. Lett., 123(14):142301, 2019. arXiv:
1903.01790, doi:10.1103/PhysRevLett.123.142301.

[26] Morad Aaboud et al. Fluctuations of anisotropic flow in Pb+Pb collisions at
√

sNN = 5.02 TeV with the
ATLAS detector. JHEP, 01:051, 2020. arXiv:1904.04808, doi:10.1007/JHEP01(2020)051.

[27] Jaroslav Adam et al. Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions
at √sNN = 2.76 TeV. Phys. Rev. Lett., 117:182301, 2016. arXiv:1604.07663, doi:10.1103/
PhysRevLett.117.182301.

[28] Albert M Sirunyan et al. Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in
pp and p + Pb Collisions at the LHC. Phys. Rev. Lett., 120(9):092301, 2018. arXiv:1709.09189,
doi:10.1103/PhysRevLett.120.092301.

[29] Morad Aaboud et al. Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb
and low-multiplicity Pb+Pb collisions with the ATLAS detector. Phys. Lett. B, 789:444–471, 2019.
arXiv:1807.02012, doi:10.1016/j.physletb.2018.11.065.

[30] Albert M Sirunyan et al. Mixed higher-order anisotropic flow and nonlinear response coefficients of
charged particles in PbPb collisions at

√
sNN = 2.76 and 5.02 TeV. Eur. Phys. J. C, 80(6):534, 2020.

arXiv:1910.08789, doi:10.1140/epjc/s10052-020-7834-9.

[31] Shreyasi Acharya et al. Measurements of mixed harmonic cumulants in Pb–Pb collisions at
√

sNN =

5.02 TeV. Phys. Lett. B, 818:136354, 2021. arXiv:2102.12180, doi:10.1016/j.physletb.2021.
136354.

111

http://arxiv.org/abs/2205.00080
http://arxiv.org/abs/1408.4342
https://doi.org/10.1140/epjc/s10052-014-3157-z
http://arxiv.org/abs/1406.2474
https://doi.org/10.1103/PhysRevC.90.054901
https://doi.org/10.1103/PhysRevC.90.054901
http://arxiv.org/abs/1305.0609
https://doi.org/10.1016/j.physletb.2013.06.028
http://arxiv.org/abs/1409.2043
https://doi.org/10.1016/j.physletb.2015.04.033
http://arxiv.org/abs/1505.07812
https://doi.org/10.1103/PhysRevLett.115.222301
http://arxiv.org/abs/1708.03559
https://doi.org/10.1103/PhysRevC.97.024904
https://doi.org/10.1103/PhysRevC.97.024904
http://arxiv.org/abs/1711.05594
https://doi.org/10.1016/j.physletb.2018.11.063
http://arxiv.org/abs/1903.01790
http://arxiv.org/abs/1903.01790
https://doi.org/10.1103/PhysRevLett.123.142301
http://arxiv.org/abs/1904.04808
https://doi.org/10.1007/JHEP01(2020)051
http://arxiv.org/abs/1604.07663
https://doi.org/10.1103/PhysRevLett.117.182301
https://doi.org/10.1103/PhysRevLett.117.182301
http://arxiv.org/abs/1709.09189
https://doi.org/10.1103/PhysRevLett.120.092301
http://arxiv.org/abs/1807.02012
https://doi.org/10.1016/j.physletb.2018.11.065
http://arxiv.org/abs/1910.08789
https://doi.org/10.1140/epjc/s10052-020-7834-9
http://arxiv.org/abs/2102.12180
https://doi.org/10.1016/j.physletb.2021.136354
https://doi.org/10.1016/j.physletb.2021.136354


[32] Shreyasi Acharya et al. Characterizing the initial conditions of heavy-ion collisions at the LHC with
mean transverse momentum and anisotropic flow correlations. Phys. Lett. B, 834:137393, 2022. arXiv:
2111.06106, doi:10.1016/j.physletb.2022.137393.

[33] Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC
with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation. 4 2022.
arXiv:2205.00039.

[34] Giuliano Giacalone, Björn Schenke, and Chun Shen. Observable signatures of initial state momentum
anisotropies in nuclear collisions. Phys. Rev. Lett., 125(19):192301, 2020. arXiv:2006.15721,
doi:10.1103/PhysRevLett.125.192301.

[35] Correlations between multiparticle cumulants and mean transverse momentum in small collision systems
with the CMS detector. Technical report, CERN, Geneva, 2022. URL: https://cds.cern.ch/record/

2805932.

[36] S. S. Adler et al. Bose-Einstein correlations of charged pion pairs in Au + Au collisions at
s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 93:152302, 2004. arXiv:nucl-ex/0401003, doi:
10.1103/PhysRevLett.93.152302.

[37] J. Adams et al. Pion interferometry in Au+Au collisions at S(NN)**(1/2) = 200-GeV. Phys. Rev. C,
71:044906, 2005. arXiv:nucl-ex/0411036, doi:10.1103/PhysRevC.71.044906.

[38] Jaroslav Adam et al. One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at
√

sNN
=2.76 TeV. Phys. Rev. C, 92(5):054908, 2015. arXiv:1506.07884, doi:10.1103/PhysRevC.92.
054908.

[39] Albert M Sirunyan et al. Bose-Einstein correlations in pp, pPb, and PbPb collisions at
√

sNN = 0.9 − 7
TeV. Phys. Rev. C, 97(6):064912, 2018. arXiv:1712.07198, doi:10.1103/PhysRevC.97.064912.

[40] Morad Aaboud et al. Femtoscopy with identified charged pions in proton-lead collisions at
√

sNN = 5.02
TeV with ATLAS. Phys. Rev. C, 96(6):064908, 2017. arXiv:1704.01621, doi:10.1103/PhysRevC.
96.064908.

[41] K0
S and Λ(Λ) two-particle femtoscopic correlations in PbPb collisions at

√
sNN = 5.02 TeV. 1 2023.

arXiv:2301.05290.

[42] L. Adamczyk et al. Azimuthal anisotropy in U+U and Au+Au collisions at RHIC. Phys. Rev. Lett.,
115(22):222301, 2015. arXiv:1505.07812, doi:10.1103/PhysRevLett.115.222301.

[43] Jaroslav Adam et al. Azimuthal Harmonics in Small and Large Collision Systems at RHIC Top
Energies. Phys. Rev. Lett., 122(17):172301, 2019. arXiv:1901.08155, doi:10.1103/PhysRevLett.
122.172301.

[44] C. Aidala et al. Measurements of Multiparticle Correlations in d + Au Collisions at 200, 62.4, 39, and
19.6 GeV and p + Au Collisions at 200 GeV and Implications for Collective Behavior. Phys. Rev. Lett.,
120(6):062302, 2018. arXiv:1707.06108, doi:10.1103/PhysRevLett.120.062302.

[45] Bjoern Schenke, Chun Shen, and Prithwish Tribedy. Running the gamut of high energy nuclear collisions.
Phys. Rev. C, 102(4):044905, 2020. arXiv:2005.14682, doi:10.1103/PhysRevC.102.044905.

[46] Chun Shen and Björn Schenke. Longitudinal dynamics and particle production in relativistic nuclear
collisions. Phys. Rev. C, 105(6):064905, 2022. arXiv:2203.04685, doi:10.1103/PhysRevC.105.
064905.

112

http://arxiv.org/abs/2111.06106
http://arxiv.org/abs/2111.06106
https://doi.org/10.1016/j.physletb.2022.137393
http://arxiv.org/abs/2205.00039
http://arxiv.org/abs/2006.15721
https://doi.org/10.1103/PhysRevLett.125.192301
https://cds.cern.ch/record/2805932
https://cds.cern.ch/record/2805932
http://arxiv.org/abs/nucl-ex/0401003
https://doi.org/10.1103/PhysRevLett.93.152302
https://doi.org/10.1103/PhysRevLett.93.152302
http://arxiv.org/abs/nucl-ex/0411036
https://doi.org/10.1103/PhysRevC.71.044906
http://arxiv.org/abs/1506.07884
https://doi.org/10.1103/PhysRevC.92.054908
https://doi.org/10.1103/PhysRevC.92.054908
http://arxiv.org/abs/1712.07198
https://doi.org/10.1103/PhysRevC.97.064912
http://arxiv.org/abs/1704.01621
https://doi.org/10.1103/PhysRevC.96.064908
https://doi.org/10.1103/PhysRevC.96.064908
http://arxiv.org/abs/2301.05290
http://arxiv.org/abs/1505.07812
https://doi.org/10.1103/PhysRevLett.115.222301
http://arxiv.org/abs/1901.08155
https://doi.org/10.1103/PhysRevLett.122.172301
https://doi.org/10.1103/PhysRevLett.122.172301
http://arxiv.org/abs/1707.06108
https://doi.org/10.1103/PhysRevLett.120.062302
http://arxiv.org/abs/2005.14682
https://doi.org/10.1103/PhysRevC.102.044905
http://arxiv.org/abs/2203.04685
https://doi.org/10.1103/PhysRevC.105.064905
https://doi.org/10.1103/PhysRevC.105.064905


[47] Patrick Carzon, Mauricio Martinez, Matthew D. Sievert, Douglas E. Wertepny, and Jacquelyn Noronha-
Hostler. Monte Carlo event generator for initial conditions of conserved charges in nuclear geometry.
Phys. Rev. C, 105(3):034908, 2022. arXiv:1911.12454, doi:10.1103/PhysRevC.105.034908.

[48] Bjoern Schenke and Soeren Schlichting. 3D glasma initial state for relativistic heavy ion collisions.
Phys. Rev. C, 94(4):044907, 2016. arXiv:1605.07158, doi:10.1103/PhysRevC.94.044907.

[49] Bjoern Schenke, Soeren Schlichting, and Pragya Singh. Rapidity dependence of initial state geometry and
momentum correlations in p+Pb collisions. Phys. Rev. D, 105(9):094023, 2022. arXiv:2201.08864,
doi:10.1103/PhysRevD.105.094023.

[50] Aleksi Kurkela, Aleksas Mazeliauskas, Jean-François Paquet, Sören Schlichting, and Derek Teaney.
Matching the Nonequilibrium Initial Stage of Heavy Ion Collisions to Hydrodynamics with QCD Kinetic
Theory. Phys. Rev. Lett., 122(12):122302, 2019. arXiv:1805.01604, doi:10.1103/PhysRevLett.
122.122302.

[51] Mubarak Alqahtani, Mohammad Nopoush, and Michael Strickland. Relativistic anisotropic hydrody-
namics. Prog. Part. Nucl. Phys., 101:204–248, 2018. arXiv:1712.03282, doi:10.1016/j.ppnp.
2018.05.004.

[52] M. McNelis, D. Bazow, and U. Heinz. (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD
equation of state. Phys. Rev. C, 97(5):054912, 2018. arXiv:1803.01810, doi:10.1103/PhysRevC.
97.054912.

[53] Samapan Bhadury, Wojciech Florkowski, Amaresh Jaiswal, Avdhesh Kumar, and Radoslaw Ryblewski.
Dissipative Spin Dynamics in Relativistic Matter. Phys. Rev. D, 103(1):014030, 2021. arXiv:2008.
10976, doi:10.1103/PhysRevD.103.014030.

[54] Shuzhe Shi, Hui Zhang, Defu Hou, and Jinfeng Liao. Signatures of Chiral Magnetic Effect in the
Collisions of Isobars. Phys. Rev. Lett., 125:242301, 2020. arXiv:1910.14010, doi:10.1103/
PhysRevLett.125.242301.

[55] Martin Ammon, Sebastian Grieninger, Juan Hernandez, Matthias Kaminski, Roshan Koirala, Julian
Leiber, and Jackson Wu. Chiral hydrodynamics in strong external magnetic fields. JHEP, 04:078, 2021.
arXiv:2012.09183, doi:10.1007/JHEP04(2021)078.

[56] Paolo Parotto, Marcus Bluhm, Debora Mroczek, Marlene Nahrgang, Jacquelyn Noronha-Hostler, Krishna
Rajagopal, Claudia Ratti, Thomas Schäfer, and Mikhail Stephanov. QCD equation of state matched
to lattice data and exhibiting a critical point singularity. Phys. Rev. C, 101(3):034901, 2020. arXiv:
1805.05249, doi:10.1103/PhysRevC.101.034901.

[57] Akihiko Monnai, Björn Schenke, and Chun Shen. Equation of state at finite densities for QCD matter in
nuclear collisions. Phys. Rev. C, 100(2):024907, 2019. arXiv:1902.05095, doi:10.1103/PhysRevC.
100.024907.

[58] J. Noronha-Hostler, P. Parotto, C. Ratti, and J. M. Stafford. Lattice-based equation of state at finite
baryon number, electric charge and strangeness chemical potentials. Phys. Rev. C, 100(6):064910, 2019.
arXiv:1902.06723, doi:10.1103/PhysRevC.100.064910.

[59] Akihiko Monnai, Björn Schenke, and Chun Shen. QCD Equation of State at Finite Chemical Potentials
for Relativistic Nuclear Collisions. Int. J. Mod. Phys. A, 36(07):2130007, 2021. arXiv:2101.11591,
doi:10.1142/S0217751X21300076.

113

http://arxiv.org/abs/1911.12454
https://doi.org/10.1103/PhysRevC.105.034908
http://arxiv.org/abs/1605.07158
https://doi.org/10.1103/PhysRevC.94.044907
http://arxiv.org/abs/2201.08864
https://doi.org/10.1103/PhysRevD.105.094023
http://arxiv.org/abs/1805.01604
https://doi.org/10.1103/PhysRevLett.122.122302
https://doi.org/10.1103/PhysRevLett.122.122302
http://arxiv.org/abs/1712.03282
https://doi.org/10.1016/j.ppnp.2018.05.004
https://doi.org/10.1016/j.ppnp.2018.05.004
http://arxiv.org/abs/1803.01810
https://doi.org/10.1103/PhysRevC.97.054912
https://doi.org/10.1103/PhysRevC.97.054912
http://arxiv.org/abs/2008.10976
http://arxiv.org/abs/2008.10976
https://doi.org/10.1103/PhysRevD.103.014030
http://arxiv.org/abs/1910.14010
https://doi.org/10.1103/PhysRevLett.125.242301
https://doi.org/10.1103/PhysRevLett.125.242301
http://arxiv.org/abs/2012.09183
https://doi.org/10.1007/JHEP04(2021)078
http://arxiv.org/abs/1805.05249
http://arxiv.org/abs/1805.05249
https://doi.org/10.1103/PhysRevC.101.034901
http://arxiv.org/abs/1902.05095
https://doi.org/10.1103/PhysRevC.100.024907
https://doi.org/10.1103/PhysRevC.100.024907
http://arxiv.org/abs/1902.06723
https://doi.org/10.1103/PhysRevC.100.064910
http://arxiv.org/abs/2101.11591
https://doi.org/10.1142/S0217751X21300076


[60] Xin An et al. The BEST framework for the search for the QCD critical point and the chiral magnetic
effect. Nucl. Phys. A, 1017:122343, 2022. arXiv:2108.13867, doi:10.1016/j.nuclphysa.2021.
122343.

[61] Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna Rajagopal, and Urs Achim Wiedemann.
Gauge/String Duality, Hot QCD and Heavy Ion Collisions. Cambridge University Press, 2014. arXiv:
1101.0618, doi:10.1017/CBO9781139136747.

[62] Marlene Nahrgang, Marcus Bluhm, Thomas Schaefer, and Steffen A. Bass. Diffusive dynamics of critical
fluctuations near the QCD critical point. Phys. Rev. D, 99(11):116015, 2019. arXiv:1804.05728,
doi:10.1103/PhysRevD.99.116015.

[63] Marlene Nahrgang and Marcus Bluhm. Modeling the diffusive dynamics of critical fluctuations near
the QCD critical point. Phys. Rev. D, 102(9):094017, 2020. arXiv:2007.10371, doi:10.1103/
PhysRevD.102.094017.

[64] Yukinao Akamatsu, Aleksas Mazeliauskas, and Derek Teaney. A kinetic regime of hydrodynamic
fluctuations and long time tails for a Bjorken expansion. Phys. Rev. C, 95(1):014909, 2017. arXiv:
1606.07742, doi:10.1103/PhysRevC.95.014909.

[65] M. Stephanov and Y. Yin. Hydrodynamics with parametric slowing down and fluctuations near the critical
point. Phys. Rev. D, 98(3):036006, 2018. arXiv:1712.10305, doi:10.1103/PhysRevD.98.036006.

[66] Xin An, Gokce Basar, Mikhail Stephanov, and Ho-Ung Yee. Relativistic Hydrodynamic Fluctuations.
Phys. Rev. C, 100(2):024910, 2019. arXiv:1902.09517, doi:10.1103/PhysRevC.100.024910.

[67] Krishna Rajagopal, Gregory Ridgway, Ryan Weller, and Yi Yin. Understanding the out-of-equilibrium
dynamics near a critical point in the QCD phase diagram. Phys. Rev. D, 102(9):094025, 2020. arXiv:
1908.08539, doi:10.1103/PhysRevD.102.094025.
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kinetic theory: Transient modes and the gradient expansion. Phys. Rev. D, 97(9):091503, 2018. arXiv:
1609.04803, doi:10.1103/PhysRevD.97.091503.

[1031] Michal P. Heller and Michal Spalinski. Hydrodynamics Beyond the Gradient Expansion: Resurgence
and Resummation. Phys. Rev. Lett., 115(7):072501, 2015. arXiv:1503.07514, doi:10.1103/
PhysRevLett.115.072501.

[1032] Wojciech Florkowski, Michal P. Heller, and Michal Spalinski. New theories of relativistic hydro-
dynamics in the LHC era. Rept. Prog. Phys., 81(4):046001, 2018. arXiv:1707.02282, doi:
10.1088/1361-6633/aaa091.

[1033] Paul Romatschke and Ulrike Romatschke. Relativistic Fluid Dynamics In and Out of Equilibrium.
Cambridge Monographs on Mathematical Physics. Cambridge University Press, 5 2019. arXiv:
1712.05815, doi:10.1017/9781108651998.

[1034] Jürgen Berges, Michal P. Heller, Aleksas Mazeliauskas, and Raju Venugopalan. QCD thermalization:
Ab initio approaches and interdisciplinary connections. Rev. Mod. Phys., 93(3):035003, 2021. arXiv:
2005.12299, doi:10.1103/RevModPhys.93.035003.

[1035] Chandrodoy Chattopadhyay, Sunil Jaiswal, Lipei Du, Ulrich Heinz, and Subrata Pal. Non-conformal
attractor in boost-invariant plasmas. Phys. Lett. B, 824:136820, 2022. arXiv:2107.05500, doi:
10.1016/j.physletb.2021.136820.

[1036] Sunil Jaiswal, Chandrodoy Chattopadhyay, Lipei Du, Ulrich Heinz, and Subrata Pal. Nonconformal
kinetic theory and hydrodynamics for Bjorken flow. Phys. Rev. C, 105(2):024911, 2022. arXiv:
2107.10248, doi:10.1103/PhysRevC.105.024911.

180

http://arxiv.org/abs/1910.00021
https://doi.org/10.1016/j.physletb.2021.136189
https://doi.org/10.1016/j.physletb.2021.136189
http://arxiv.org/abs/2004.05195
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1103/PhysRevLett.125.122302
http://arxiv.org/abs/2207.07786
https://doi.org/10.1103/PhysRevD.106.056024
http://arxiv.org/abs/2203.02427
https://doi.org/10.1007/JHEP05(2022)145
http://arxiv.org/abs/1302.0697
https://doi.org/10.1103/PhysRevLett.110.211602
https://doi.org/10.1103/PhysRevLett.110.211602
http://arxiv.org/abs/1603.05344
http://arxiv.org/abs/1603.05344
https://doi.org/10.1103/PhysRevD.94.106011
http://arxiv.org/abs/1608.07869
http://arxiv.org/abs/1609.04803
http://arxiv.org/abs/1609.04803
https://doi.org/10.1103/PhysRevD.97.091503
http://arxiv.org/abs/1503.07514
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501
http://arxiv.org/abs/1707.02282
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
http://arxiv.org/abs/1712.05815
http://arxiv.org/abs/1712.05815
https://doi.org/10.1017/9781108651998
http://arxiv.org/abs/2005.12299
http://arxiv.org/abs/2005.12299
https://doi.org/10.1103/RevModPhys.93.035003
http://arxiv.org/abs/2107.05500
https://doi.org/10.1016/j.physletb.2021.136820
https://doi.org/10.1016/j.physletb.2021.136820
http://arxiv.org/abs/2107.10248
http://arxiv.org/abs/2107.10248
https://doi.org/10.1103/PhysRevC.105.024911


[1037] Mauricio Martinez and Michael Strickland. Dissipative Dynamics of Highly Anisotropic Systems. Nucl.
Phys. A, 848:183–197, 2010. arXiv:1007.0889, doi:10.1016/j.nuclphysa.2010.08.011.

[1038] Wojciech Florkowski and Radoslaw Ryblewski. Highly-anisotropic and strongly-dissipative hy-
drodynamics for early stages of relativistic heavy-ion collisions. Phys. Rev. C, 83:034907, 2011.
arXiv:1007.0130, doi:10.1103/PhysRevC.83.034907.

[1039] Mike McNelis, Dennis Bazow, and Ulrich Heinz. Anisotropic fluid dynamical simulations of heavy-ion
collisions. Comput. Phys. Commun., 267:108077, 2021. arXiv:2101.02827, doi:10.1016/j.cpc.
2021.108077.

[1040] Fábio S. Bemfica, Marcelo M. Disconzi, and Jorge Noronha. Causality and existence of solutions
of relativistic viscous fluid dynamics with gravity. Phys. Rev. D, 98(10):104064, 2018. arXiv:
1708.06255, doi:10.1103/PhysRevD.98.104064.

[1041] Pavel Kovtun. First-order relativistic hydrodynamics is stable. JHEP, 10:034, 2019. arXiv:1907.
08191, doi:10.1007/JHEP10(2019)034.

[1042] Fábio S. Bemfica, Fábio S. Bemfica, Marcelo M. Disconzi, Marcelo M. Disconzi, Jorge Noronha, and
Jorge Noronha. Nonlinear Causality of General First-Order Relativistic Viscous Hydrodynamics. Phys.
Rev. D, 100(10):104020, 2019. [Erratum: Phys.Rev.D 105, 069902 (2022)]. arXiv:1907.12695,
doi:10.1103/PhysRevD.100.104020.

[1043] Raphael E. Hoult and Pavel Kovtun. Stable and causal relativistic Navier-Stokes equations. JHEP,
06:067, 2020. arXiv:2004.04102, doi:10.1007/JHEP06(2020)067.

[1044] Fabio S. Bemfica, Marcelo M. Disconzi, and Jorge Noronha. First-Order General-Relativistic Viscous
Fluid Dynamics. Phys. Rev. X, 12(2):021044, 2022. arXiv:2009.11388, doi:10.1103/PhysRevX.
12.021044.
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